Skip to main content
Log in

Regenerated synapses persist in the superior colliculus after the regrowth of retinal ganglion cell axons

  • Published:
Journal of Neurocytology

Summary

Synapse formation by retinal ganglion cell axons was sought in the superior colliculus of four adult rats 16–18 months after the optic nerve was transected and replaced by a peripheral nerve graft that guided regenerating RGC axons from the eye to the superior colliculus. The terminals of retinal ganglion cell axons were labelled by intravitreal injections of tritiated amino acids and studied by light and electron microscopic autoradiography. We found that (i) retinal ganglion cell axons had extended from the tips of the peripheral nerve grafts into the superior colliculus for approximately 350 μ,m; (ii) within the superior colliculus, some regenerated retinal ganglion cell axons became ensheathed by CNS myelin; (iii) retinal ganglion cell terminals formed asymmetric synapses with dendrites of neurons in the superficial layers of the superior colliculus, mainly the stratum griseum superficialis.

Regenerated (n=418) and normal retinal ganglion cell terminals (n=1775) in the superior colliculus were compared in terms of their size (area, perimeter, and maximum diameter), contacts per terminal, contacts per 10 μm terminal perimeter, and post-synaptic structure contacted (dendritic spine, shaft, or soma). No statistically significant differences in the ultrastructural characteristics of the pre-synaptic profiles were apparent between the two groups. The post-synaptic structures contacted by axon terminals were similar in regenerated and control animals, although there were quantitative differences in the distributions of these contacts among dendritic spines and shafts.

These results suggest that the regeneration of retinal ganglion cell axons in adult rats can lead to the formation of ultrastructurally normal synapses in the appropriate layers of the superior colliculus. The re-formed connections appear to persist for the life-span of these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguaya, A. J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G. M. &Richardson, P. M. (1978) Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia.Neuroscience Letters 9, 97–104.

    Google Scholar 

  • Baulac, M., Lachapelle, F., Gout, O., Berger, B., Baumann, N. &Gumpel, M. (1987) Transplantation of oligodendrocytes in the newborn mouse brain: extension of myelin by transplanted cells. Anatomical study.Brain Research 420, 39–47.

    PubMed  Google Scholar 

  • Behan, M. (1981) Identification and distribution of retinocollicular terminals in the cat: an electron microscopic autoradiographic analysis.Journal of Comparative Neurology 199, 1–15.

    PubMed  Google Scholar 

  • Bernstein, J. J. &Bernstein, M. E. (1971) Axonal regneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord.Experimental Neurology 30, 336–51.

    PubMed  Google Scholar 

  • Björklund, A., Segal, M. &Stenevi, U. (1979) Functional reinnervation of rat hippocampus by locus coeruleus implants.Brain Research 170, 409–26.

    PubMed  Google Scholar 

  • Campbell, G. &Frost, D. O. (1987) Target-controlled differentiation of axon terminals and synaptic organization.Proceedings of the National Academy of Sciences (USA) 84, 6929–33.

    Google Scholar 

  • Campbell, G. &Frost, D. O. (1988) Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target controlled morphogenesis of axon terminals and synaptic glomeruli.Journal of Comparative Neurology 272, 383–408.

    PubMed  Google Scholar 

  • Caroni, P. &Schwab, M. E. (1988) Antibody against myelin-associated inhibitor of neunte growth neutralizes nonpermissive substrate properties of CNS white matter.Neuron 1, 85–96.

    PubMed  Google Scholar 

  • Carter, D. A., Bray, G. M. &Aguayo, A. J. (1989a) Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters.Journal of Neuroscience 9, 4042–50.

    PubMed  Google Scholar 

  • Carter, D., Bray, G. M. &Aguayo, A. J. (1989b) Extension and persistence of regenerated retinal ganglion cell axons in the superior colliculus of adult hamsters.Society for Neuroscience Abstracts 15, 872.

    Google Scholar 

  • Carter, D. A., Bray, G. M. &Aguayo, A. J. (1991) Retino-collicular axon terminals in the hamster: an ultrastructural study.Journal of Comparative Neurology (in press).

  • Descarries, L. &Beaudet, A. (1984) The use of radio-autography for investigating transmitter specific neurons. InHandbook of Chemical Neuroanatomy (edited byBjörklund, A. &Hokfelt, T.) pp. 286–364. Amsterdam: Elsevier.

    Google Scholar 

  • Hayes, W. P. &Meyer, R. L. (1988) Retinotopically inapproriate synapses of subnormal density formed by surgically misdirected optic fibres in goldfish tectum.Developmental Brain Research 38, 304–12.

    Google Scholar 

  • Hirano, A. (1981) Structure of normal central myelinated fibres. InDemyelinating Disease: Basic and Clinical Electrophysiology. Advances in Neurology, Vol. 31 (edited byWaxman, S. G. &Ritchie, J. M.) pp. 51–68. New York: Raven Press.

    Google Scholar 

  • Itoh, Y. &Tessler, A. (1990) Ultrastructural organization of regenerated adult dorsal root axons within transplants of fetal spinal cord.Journal of Comparative Neurology 292, 396–411.

    PubMed  Google Scholar 

  • Kalil, R. E., Dubin, M. W., Scott, G. &Stark, L. A. (1986) Elimination of action potentials blocks the structural development of retinogeniculate synapses.Nature 323, 156–8.

    PubMed  Google Scholar 

  • Keirstead, S. A., Vidal-Sanz, M., Rasminsky, M., Aguayo, A. J., Levesque, M. &So, K. -F. (1985) Responses to light of retinal neurons regenerating axons into peripheral nerve grafts in the rat.Brain Research 359, 402–6.

    PubMed  Google Scholar 

  • Keirstead, S. A., Rasminsky, M., Fukuda, Y., Carter, D. A., Aguayo, A. J. &Vidal-Sanz, M. (1989) Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons.Science 246, 255–7.

    PubMed  Google Scholar 

  • Ludwin, S. K. (1987) Regeneration of myelin and oligodendrocytes in the central nervous system.Progress in Brain Research 71, 469–84.

    PubMed  Google Scholar 

  • Lund, R. D. (1969) Synaptic patterns of the superficial layers of the superior colliculus of the rat.Journal of Comparative Neurology 135, 197–208.

    Google Scholar 

  • Lund, R. D., Radel, J. D., Hankin, M. H., Klassen, H., Coffey, P. J. &Rawlins, J. N. P. (1990) Developmental and functional integration of retinal transplants with host rat brains. InBrain Repair (edited byBjörklund, A., Aguayo, A. J. &Ottoson, D.) pp. 327–40. London, Macmillan.

    Google Scholar 

  • Mize, R. R. (1983) Variations in the retinal synapses of the cat superior colliculus revealed using quantitative electron microscope autoradiography.Brain Research 269, 211–21.

    PubMed  Google Scholar 

  • Mooney, R. D., Klein, B. G., Szczepanik, A. M. &Rhoades, R. W. (1985) Extensive recrossing of retinotectal axons after neonatal unilateral superior collicular lesions in hamster.Developmental Brain Research 19, 297–313.

    Google Scholar 

  • Murray, M. &Edwards, M. A. (1982) A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush.Journal of Comparative Neurology 209, 363–73.

    PubMed  Google Scholar 

  • Palay, S. L. &Chan-Palay, V. (1975) A guide to the synaptic analysis of the neuropil.Cold Spring Harbor Symposia on Quantitative Biology 40, 1–16.

    Google Scholar 

  • Pesheva, P., Spiess, E. &Schachner, M. (1989) J1-160 and J1-180 are oligodendrocyte-secreted nonpermissive substrates for cell adhesion.Journal of Cell Biology 109, 1765–78.

    PubMed  Google Scholar 

  • Radel, J. D. &Yoon, M. G. (1985) Time-course of ultrastructural changes in regenerated optic fibre terminals of goldfish.Brain Research 342, 168–71.

    PubMed  Google Scholar 

  • Raff, M. C., Ffrench-Constant, C. &Miller, R. H. (1987) Glial cells in the rat optic nerve and some thoughts on remyelination in the mammalian CNS.Journal of Experimental Biology 132, 35–41.

    PubMed  Google Scholar 

  • Sachs, G. M. &Schneider, G. E. (1984) The morphology of optic tract axons arborizing in the superior colliculus of the hamster.Journal of Comparative Neurology 320, 155–167.

    Google Scholar 

  • Salpeter, M. M. &Mchenry, F. A. (1973) Electron replacement through transplantation of solid embryonic implants.Neuroscience 20, 1–22.

    Google Scholar 

  • Stuermer, C. A. O. &Easter, S. J. (1984) A comparison of the normal and regenerated retinotectal pathways of goldfish.Journal of Comparative Neurology 223, 57–76.

    PubMed  Google Scholar 

  • Valverde, F. (1973) The neuropil in superficial layers of the superior colliculus of the mouse: a correlated Golgi and electron microscopic study.Zeitschrift für Anatomie und Entwicklungsgeschichte 142, 117–47.

    Google Scholar 

  • Vidal-Sanz, M., Bray, G. M., Villegas-Pérez, M. P., Thanos, S. &Aguayo, A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat.Journal of Neuroscience 7, 2894–909.

    PubMed  Google Scholar 

  • Villegas-Pérez, M. P., Vidal-Sanz, M., Bray, G. M. &Aguayo, A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats.Journal of Neuroscience 8, 265–80.

    PubMed  Google Scholar 

  • Villegas-Pérez, M. P., Vidal-Sanz, M., Bray, G. M. &Aguayo, A. J. (1989) The distance of axotomy from the neuronal cell body influences the rate of retrograde degeneration but not long-term survival of retinal ganglion cells (RGCs).Society for Neuroscience Abstracts 15, 457.

    Google Scholar 

  • Weinberg, H. J. &Spencer, P. S. (1979) Studies on the control of myelinogenesis. III. Signalling of oligodendrocyte myelination by regenerating peripheral axons.Brain Research 162, 273–9.

    PubMed  Google Scholar 

  • Winer, B. J. (1971)Statistical Principles in Experimental Design. New York: McGraw-Hill.

    Google Scholar 

  • Zwimpfer, T., Aguayo, A. J., Bray, G. M. &Lawrence, D. G. (1989) Synapse formation by regenerating retinal scope autoradiography: analysis of autoradiograms. InAdvanced Techniques in Biological Electron Microscopy (edited byKoheler, J. K.) pp. 113–52. New York: Springer Verlag.

    Google Scholar 

  • Savio, T. &Schwab, M. E. (1989) Rat CNS white matter, but not grey matter, is nonpermissive for neural cell adhesion and fibre outgrowth.Journal of Neuroscience 9, 1126–33.

    PubMed  Google Scholar 

  • Scalia, F. (1987) Synapse formation in the olfactory cortex by regenerating optic axons: Ultrastructural evidence for polyspecific chemoaffinity.Journal of Comparative Neurology 263, 497–513.

    PubMed  Google Scholar 

  • Schneider, G. E. (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections.Brain, Behavior & Evolution 8, 73–109.

    Google Scholar 

  • Schwab, M. E. (1990) Myelin-associated inhibitors of neurite growth.Experimental Neurology 109, 2–5.

    PubMed  Google Scholar 

  • Schwab, M. E. &Caroni, P. (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreadingin vitro.Journal of Neuroscience 8, 2381–93.

    PubMed  Google Scholar 

  • Sotelo, C. &Alvarado-Mallart, R. M. (1987) Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell ganglion cell axons directed into an inappropriate target (the cerebellar cortex) in adult hamsters.Society for Neuroscience Abstracts 15, 458.

    Google Scholar 

  • Zwimpfer, T. J., Indue, H., Aguayo, A. J. &Bray, G. M. (1990) Regenerating retinal ganglion cell axons can form synapses with neurons in four different non-retinal targets in the adult hamster.Society for Neuroscience Abstracts 16, 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A short account of this work was presented inSociety for Neurosdence Abstracts 14, 654 (1988).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal-Sanz, M., Bray, G.M. & Aguayo, A.J. Regenerated synapses persist in the superior colliculus after the regrowth of retinal ganglion cell axons. J Neurocytol 20, 940–952 (1991). https://doi.org/10.1007/BF01190471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190471

Keywords

Navigation