Advertisement

Biophysik

, Volume 7, Issue 2, pp 163–168 | Cite as

Electron diffraction of membranes

  • J. H. Matheja
Short Communications

Summary

Electron diffraction conducted on myelin membranes, photosynthetic and photoreceptor membranes yielded spot diffraction patterns indicating an ordered state of membranes; the interplanar spacings being of the order of Å units. It was observed, too, that a membrane specimen accommodates different space structures. Based on these findings it is suggested that membrane functions-like active transport-are exercised through phase transitions; the lattice acts as a coupling agent.

Keywords

Diffraction Pattern Electron Diffraction Phase Transition Coupling Agent Space Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, G.: Theorie der Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter. I. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential. Z. Naturforsch.23, 181 (1968).Google Scholar
  2. 2.
    Blaise, J. K., Dewey, M. M., Blaurock, A. E., Worthington, C. R.: Electron microscope and low-angle X-ray diffraction studies on the outer segment membranes from the retina of the frog. J. molec. Biol.14, 143 (1965).PubMedGoogle Scholar
  3. 3.
    Bolis, L., Capraro, V., Porter, K. R., Robertson, J. D. (eds): Biophysics and physiology of biological transport. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  4. 4.
    Blumenthal, R., Changeux, J.-P., Lefever, R.: Membrane excitibility and dissipative instabilities. J. membrane Biol.2, 351 (1970).Google Scholar
  5. 5.
    Changeux, J.-P., Thiery, J., Tung, Y., Kittel, C.: On the cooperativity of biological membranes. Proc. nat. Acad. Sci. (Wash.)57, 335 (1967).Google Scholar
  6. 6.
    Davson, H., Danielle, J. F.: The permeability of natural membranes, 2nd ed. London: Camb. Univ. Press 1952.Google Scholar
  7. 7.
    Fernandez-Moran, H., Finean, J. B.: Electron microscopy and low-angle X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol.3, 725 (1957).PubMedGoogle Scholar
  8. 8.
    Finean, J. F., Coleman, R., Green, W. G., Limbrick, A. R.: Low-angle X-ray diffraction and electron microscope studies of isolated cell membranes. J. Cell Sci.1, 287 (1966).PubMedGoogle Scholar
  9. 9.
    Gordon, R.: Steady-state properties of Ising lattice membranes. J. chem. Phys.49, 570 (1968).Google Scholar
  10. 10.
    Gorter, E., Grendel, F.: On bimolecular layers of lipoids on the chromocytes of the blood. J. exp. Med.41, 439 (1925).Google Scholar
  11. 11.
    Greville, G. C.: A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. In: Current topics in bioenergetics. Vol. 3, 1 (Sanadi, D. R.,ed.) New York and London: Academic Press 1969.Google Scholar
  12. 12.
    Hill, T. L., Chen, Yi-der: Cooperative effects in models of steady-state transport across membranes. II. Oscillating phase transition. Proc. nat. Acad. Sci. (Wash.)66, 189 (1970).Google Scholar
  13. 13.
    Kilkson, R.: Membrane structure and transitions, a molecular basis of regulation. In: Nobel Symposium 11. Symmetry and function of biological systems at the macromolecular level p. 257 (Engström, A., Strandberg, B.,eds). Uppsala: Almquist and Wiksells Boktryckeri 1969.Google Scholar
  14. 14.
    Lieb, W. R., Stein, W. D.: Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane. Biophys. J.10, 585 (1970).PubMedGoogle Scholar
  15. 15.
    Lindley, B. D.: Membrane systems as transition assemblies — a basis for phenomeno-logical descriptions. J. Theoret. Biol.20, 56 (1968).Google Scholar
  16. 16.
    Membrane proteins. (Proceedings of a symposium sponsered by the New York Heart Association.) London: J. and A. Churchill Ltd. 1970.Google Scholar
  17. 17.
    Mühlethaler, K., Moor, H., Szarkowski, J. W.: The ultrastructure of the chloroplast lamellae. Planta67, 305 (1965).Google Scholar
  18. 18.
    Remsen, C. C., Watson, S. W., Waterbury, J. B., Trüper, H. G.: Fine structure ofEctothiorhodospira mobilis Pelsh. J. Bact.95, 2374 (1968).PubMedGoogle Scholar
  19. 19.
    Robertson, J. D.: The molecular structure and contact relationships of cell membranes. Prog. Biophys.10, 343 (1960).Google Scholar
  20. 20.
    Schmitt, F. O., Bear, R. S., Palmer, K. J.: X-ray diffraction studies on the structure of the nerve myelin sheath. J. cell. comp. Physiol.18, 31 (1941).Google Scholar
  21. 21.
    Sjöstrand, F. S.: A comparison of plasma membrane, cytomembranes, and mitochondrial membrane elements with respect to ultrastructural features. J. Ultrastruct. Res.9, 561 (1963).Google Scholar
  22. 22.
    Trüper, H. G.:Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cells. J. Bact.95, 1910 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • J. H. Matheja
    • 1
  1. 1.Institut für Physikalische Chemie der Kernforschungsanlage JülichDeutschland

Personalised recommendations