Products of simple groups and symmetric groups

This is a preview of subscription content, log in to check access.


  1. [1]

    P. J. Cameron, Finite permutation groups and finite simple groups. Bull. London Math. Soc.13, 1–22 (1981).

    Google Scholar 

  2. [2]

    J. H.Conway, R. T.Curtis, S. P.Norton, R. A.Parker, and R. A.Wilson Atlas of finite groups. Oxford 1985.

  3. [3]

    T. R. Gentchev, Factorizations of the groups of Lie type of Lie rank 1 or 2. Arch. Math.47, 493–499 (1986).

    Google Scholar 

  4. [4]

    T. R. Gentchev, Factorizations of the sporadic simple groups. Arch. Math.47, 7–12 (1986).

    Google Scholar 

  5. [5]

    R. Guralnick, Subgroups of prime power index in a simple group. J. Algebra81, 304–311 (1983).

    Google Scholar 

  6. [6]

    H. Hanes, K. Olson andW. R. Scott, Products of simple groups. J. Algebra36, 167–184 (1975).

    Google Scholar 

  7. [7]

    M. W. Liebeck, C. E. Praeger andJ. Saxl, The Maximal Factorizations of the Finite Simple Groups and their Automorphism Groups. Memoirs86, 432 (1990).

    Google Scholar 

  8. [8]

    U. Preiser, Factorizations of finite groups. Math. Z.185, 373–402 (1984).

    Google Scholar 

  9. [9]

    W. R. Scott, Products ofA 5 and a finite simple group. J. Algebra37, 165–167 (1975).

    Google Scholar 

  10. [10]

    C. C.Sims, Computational methods in the study of permutation groups. In: Computational Problems in Abstract Algebra, J. Leech Ed., 169–183, Oxford 1970.

  11. [11]

    G. L. Walls, Products of finite simple groups. J. Algebra48, 68–88 (1978).

    Google Scholar 

  12. [12]

    G. L. Walls, Groups which are the product of finite simple groups. Arch. Math.50, 1–4 (1988).

    Google Scholar 

  13. [13]

    G. L. Walls, Non-simple groups which are the product of simple groups. Arch. Math.53, 209–216 (1989).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walls, G.L. Products of simple groups and symmetric groups. Arch. Math 58, 313–321 (1992).

Download citation


  • Simple Group
  • Symmetric Group