Skip to main content
Log in

Sensitivity, controllability, and necessary conditions of optimal control problems governed by integral equations

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Infinite-dimensional perturbations in all constraints of an optimal control problem governed by a Volterra integral equation with the presence of a state constraint are considered. These perturbations give rise to a value function, whose analysis through the proximal normal technique provides sensitivity, controllability, and even necessary conditions for the basic problem. Actually all information about the value function is contained in Clarke's normal cone of its epigraph, which can be characterized by the proximal normal formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Berkovitz, A penalty function proof of the maximum principle, Appl. Math. Optim., 2 (1976), 291–303.

    Google Scholar 

  2. J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach space, I: Theory, Canad. J. Math., 38 (1986), 431–452.

    Google Scholar 

  3. J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach space, II: Applications, Canad. J. Math., 2 (1987), 428–472.

    Google Scholar 

  4. F. H. Clarke, Perturbed optimal control problems, IEEE Trans. Automat. Control, 31 (1986), 535–542.

    Google Scholar 

  5. F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  6. F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 1990.

    Google Scholar 

  7. F. H. Clarke and P. D. Loewen, The value function in optimal control; sensitivity, controllability and time-optimality, SIAM J. Control Optim., 24 (1986), 243–263.

    Google Scholar 

  8. F. H. Clarke and P. D. Loewen, State constraints in optimal control: A case study proximal normal analysis, SIAM J. Control Optim., 25 (1987), 1440–456.

    Google Scholar 

  9. F. H. Clarke, R. J. Stern, and P. R. Wolenski, Subgradient criteria for monotonicity and the Lipschitz condition, Preprint, 1992.

  10. J. Gauvin, The generalized gradient of a marginal functional in mathematical programming, Math. Oper. Res., 41 (1979), 458–463.

    Google Scholar 

  11. P. D. Loewen, The proximal normal formula in Hilbert space, Nonlinear Anal., 11 (1987), 979–995.

    Google Scholar 

  12. N. Raïssi, Analyse Proximale en optimisation, Ph.D. thesis, Université de Montréal, 1987.

  13. R. T. Rockafellar, Extensions of subgradients calculus with applications to optimization, Non-linear Anal., 9 (1985), 665–698.

    Google Scholar 

  14. J. Warga. Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972

    Google Scholar 

  15. A. Yezza, Optimisation des Systèmes Gouvernés par des Équations Intégrales, Ph.D. thesis, Université de Montréal, 1991.

  16. A. Yezza, Sensitivity and controllability of systems governed by integral equations via proximal analysis, Canad. J. Math., 45(5) (1993), 1104–1120.

    Google Scholar 

  17. A. Yezza, Relaxed optimal control problems governed by integral equations, J. Math. Anal. Appl., 175(1) (1993), 126–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yezza, A. Sensitivity, controllability, and necessary conditions of optimal control problems governed by integral equations. Appl Math Optim 32, 73–97 (1995). https://doi.org/10.1007/BF01189904

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189904

Key words

AMS classification

Navigation