Advertisement

Water, Air, and Soil Pollution

, Volume 80, Issue 1–4, pp 95–98 | Cite as

Inorganic mercury interactions with lipid components of biological membranes:31P-NMR study of Hg(II) binding to headgroups of micellar phospholipids

  • L. Girault
  • P. Lemaire
  • A. Boudou
  • E. J. Dufourc
Part I Mercury and Human Health

Abstract

Phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC) in micellar phase in water have been studied by high resolution phosphorus-31 nuclear magnetic resonance (31P-NMR), in order to follow inorganic mercury Hg(II) binding to the lipid headgroups. Decrease of the NMR peak area is observed upon HgCl2 addition, with greater effect on PE and PS compared to PC. This is interpreted by Hg(II) binding to several phospholipid headgroups, linking different micelles together and forming by extension a large “insoluble” phospholipid-mercury network that is undetectable by high-resolution31P-NMR. The extent of phospholipid aggregation depends on the mercury-to-lipid molar ratio, and apparent Hg(II) affinities to phospholipid headgroups are in the order PE>PS>>PC. When HgCl2 is added to mixed micelles prepared with two lipids (PE/PC or PS/PC), co-precipitation is observed for both components in similar proportions.

Keywords

Lipid Nuclear Magnetic Resonance Phosphatidylcholine Phosphatidylethanolamine Phosphatidylserine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevan, D.R., Worrel, W.J., Barfield, K.D.: 1983,Colloids and Surfaces 6, 365–376.Google Scholar
  2. Boadi, W.Y., Urbach, J., Brandes, J.M., Yannai, S.: 1992,Toxicol. Appl. Pharmacol. 116, 17–23.Google Scholar
  3. Boudou, A., Delnomdedieu, M., Georgescauld, D., Ribeyre, F., Saouter, E.: 1991,Water, Air, and Soil Pollut. 56, 807–821.Google Scholar
  4. Chávez, E., Holguín, J.A.: 1988,J. Biol. Chem. 263, 3582–3587.Google Scholar
  5. Delnomdedieu, M., Boudou, A., Desmazès, J-P., Georgescauld, D.: 1989,Biochim. Biophys. Acta 986, 191–199.Google Scholar
  6. Delnomdedieu, M., Boudou, A., Georgescauld, D., Dufourc, E.J.: 1992,Chem.-Biol. Interact. 81, 243–269.Google Scholar
  7. Delnomdedieu, M., Allis, J.W.: 1993,Chem.-Biol. Interactions 88, 71–87.Google Scholar
  8. Foulkes, E.C., Bergman, D.: 1993,Toxicol. Appl. Pharmacol. 120, 89–95.Google Scholar
  9. Gutknecht, J.: 1981,J. Membr. Biol. 61, 61–66.Google Scholar
  10. James, T.L.: 1975,Nuclear magnetic resonance in biochemistry, Academic Press, New York, p. 331.Google Scholar
  11. Kinter, W.B., Pritchard, J.B.: 1977,Handbook of Physiology (section 9): Reactions to environmental agents, Williams and Wilkins, London, pp. 563–573.Google Scholar
  12. Ralston, G.B., Crisp, E.A.: 1981,Biochim. Biophys. Acta 649, 98–104.Google Scholar
  13. Ribarov, S.R., Benov, L.C.: 1981,Biochim. Biophys. Acta 640, 721–726.Google Scholar
  14. Rothstein, A.: 1976,Current topics in membrane transport, Academic Press, New York, pp. 1–76.Google Scholar
  15. Rothstein, A.: 1981,The function of red blood cells: erythrocyte pathobiology, Alan R. Liss, New York, pp. 105–131.Google Scholar
  16. Schecher, W.D., Mc Avoy, D.C.: 1991, MINEQL. 2.23 program, Environm. Res. Software, Cincinnati.Google Scholar
  17. Shinada, M., Muto, H., Takizawa, Y.: 1991,Bull. Environm. Contain. Toxicol. 47, 350–354.Google Scholar
  18. Tacnet, F., Ripoche, P., Roux, M., Neumann, J-M.: 1991,Eur. Biophys. J. 19, 317–322.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • L. Girault
    • 1
    • 2
  • P. Lemaire
    • 3
  • A. Boudou
    • 2
  • E. J. Dufourc
    • 1
  1. 1.Centre de Recherche Paul PascalCNRSPessac
  2. 2.Laboratoire d'Ecologie fondamentale et EcotoxicologieERS CNRS 077, Université de Bordeaux ITalenceFrance
  3. 3.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations