Water, Air, and Soil Pollution

, Volume 80, Issue 1–4, pp 49–58 | Cite as

Pharmacokinetic dose estimates of mercury in children and dose-response curves of performance tests in a large epidemiological study

  • J. M. Gearhart
  • H. J. ClewellIII
  • K. S. Crump
  • A. M. Shipp
  • A. Silvers
Part I Mercury and Human Health


An analysis was performed of a large epidemiological study conducted in New Zealand to evaluate the neurological effects of prenatal methylmercury (MeHg) exposure in children. In the epidemiological study, 6-year-old children, whose mothers had been exposed to MeHg through the consumption of fish, were administered performance tests to ascertain academic attainment, language development, fine and gross motor coordination, intelligence and social adjustment. These responses were correlated with estimates of prenatal exposure based on average maternal hair concentrations during pregnancy. The Benchmark Dose analysis performed in the current study suggests that the NOAEL for the most sensitive indicator of developmental effects (Test of Language Development — grammar understanding) occurs at approximately 17 ppm Hg in maternal hair. A physiologically based pharmacokinetic (PBPK) model for MeHg was developed which coherently described MeHg pharmacokinetics in the adult rat, monkey and man, and predicts fetal levels of MeHg fromin utero exposure. The model includes a description of enterohepatic recirculation of MeHg, conversion to inorganic mercury in tissues and intestinal flora, slowly reversible incorporation of mercury in tissues, and excretion of both organic and inorganic mercury into urine, feces, and hair. Analysis with the PBPK model indicates that fetal brain concentrations of MeHg at the NOAEL are on the order of 50 ppb (μg/L), and are associated with maternal dietary intakes of MeHg ranging from 0.8 to 2.5μg/kg/day. Since this analysis is based on the most sensitive endpoint in a large, general human population, no uncertainty factor should be necessary using the standard USEPA approach for setting RfDs. Therefore, the RfD suggested by this analysis would be a factor of from 3 to 8 above the current USEPA RfD of 0.3μg/kg/day.


Methylmercury Language Development Performance Test PBPK Model Inorganic Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschner, M. and Aschner, J.: 1990,Neurosci. & Biobehav. Rev. 14, 169–176.Google Scholar
  2. Aschner, M. and Clarkson, T.: 1988.Teratology 38, 145–155.Google Scholar
  3. Ballatori, N. and Clarkson, T.: 1983,Am. J. Physiol. 244, G435-G441.Google Scholar
  4. Ballatori, N. and Clarkson, T.: 1985,Am J Physiol 248, G238-G245.Google Scholar
  5. Birke, G., Johnels, G., Plantin, L-O., Sjostrand, B., Skerfving, S., Westermark, T.: 1972,Arch. Environ. Health 25:77.Google Scholar
  6. Bourne, G. H.: 1975.The Rhesus Monkey. Vol 1. Academic Press, New York.Google Scholar
  7. Burbacher, T., Rodier, P., Weiss, B.: 1990,Neurotoxicol. Teratol. 12, 191–202.Google Scholar
  8. Burbacher, T. M., Mohamed, M. K., Mottett, N. K.: 1988,Reprod. Toxicol. 1, 267–278.Google Scholar
  9. Choi, B.: 1989,Prog. Neurobiol. 32, 447–470.Google Scholar
  10. Clarkson, T.: 1990,Environ. Toxicol. Chem. 9, 957–961.Google Scholar
  11. Clarkson, T., Amin-Zaki, L., Tikriti, S.: 1976,Fed. Proc. 35, 2395–2399.Google Scholar
  12. Cox, C., Clarkson, T., Marsh, D., Amin-Zaki, L., Tikriti, S., Myers, G..: 1989,Environ. Res. 49, 318–332.Google Scholar
  13. Crump, K.S.: 1984,Fund. Appl. Toxicol. 4, 854–871.Google Scholar
  14. Crump, K.S.: 1994,Risk Anal. (in press).Google Scholar
  15. Evans, H., Garman, R.H., Weiss, B.: 1977,Toxicol. and Appl. Pharmacol. 41, 15–33.Google Scholar
  16. Farris, F., Dedrick, R., Allen, P., Smith, J.: 1993,Toxicol. and Appl. Pharmacol. 119, 74–90.Google Scholar
  17. Faustman, E., Allen, B., Kimmel, C., Kavlock, R.: 1994,Fund. Appl. Toxicol. (in press).Google Scholar
  18. Forsyth, R.P., Nies, A.S., Wyler, F., Neutze, J., Melmon, K.L.: 1968,J. Appl. Physiol. 25, 736–741.Google Scholar
  19. Gaylor, D.W. and Slikker, W.: 1990,Neuro Toxicology 11, 211–218.Google Scholar
  20. Gerlowski, L.E. and Jain, R.K.: 1983,J. Pharm. Sci. 72, 1103–1126.Google Scholar
  21. Hytten, F.E. and Leitch, I.: 1971,The Physiology of Human Pregnancy, Blackwell, 599 pp.Google Scholar
  22. International Commission on Radiological Protection: 1975,Report of the Task Group on Reference Man — ICRP Publication 23, 480 pp.Google Scholar
  23. Kawasaki, Y., Ikeda Y., Yamamoto T., Ikeda K.: 1986,J. Food Hyg. Soc. Jpn. 27, 528–552.Google Scholar
  24. Kimmel, C. and Gaylor, D.: 1988,Risk Anal. 8, 15–21.Google Scholar
  25. Kjelstrom, T., Kennedy, P., Wallis, S., Stewart, A., Fribert, L., Lind, B., Wutherspoon, T., Mantell, C.: 1989, National Swedish Environmental Protection Board Report 3642.Google Scholar
  26. Rice, D.: 1989,J. Toxicol. Environ. Health 27, 189–198.Google Scholar
  27. Rice, D., Krewski, D., Collins, B., Willes, R.: 1989,Fund. Appl. Toxicol. 12, 23–33.Google Scholar
  28. Sherlock, J., Hislop, J., Newton, D., Topping, G., Whittle, K.: 1984,Human Toxicol. 3, 117–131.Google Scholar
  29. Stern, A.: 1993,Risk Anal. 13, 355–364.Google Scholar
  30. U.S. Environmental Protection Agency (EPA). 1990. Interim Methods for Development of Inhalation Reference Concentrations. EPA/600/8-90/066A.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. M. Gearhart
    • 1
  • H. J. ClewellIII
    • 1
  • K. S. Crump
    • 1
  • A. M. Shipp
    • 1
  • A. Silvers
    • 2
  1. 1.K.S. Crump GroupICF Kaiser InternationalRustonUSA
  2. 2.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations