Skip to main content
Log in

The stabilisation of nucleic acid structures

  • Published:
Biophysik Aims and scope Submit manuscript

Summary

The difference in stabilisation between DNA and RNA is explained by assuming that the 2′ hydrogen of the ribose penetrates into theπ-electron cloud of the base of the 5′ linked nucleotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnott, S.: The geometry of nucleic acids. Progr. Biophys. molec. Biol.21, 265 (1970).

    Google Scholar 

  2. Basilia, M. R., Saier, E. L., Cousins, L. R.: Aromatic molecules as hydrogen bonding bases. J. Amer. chem. Soc.87, 1665 (1965).

    Google Scholar 

  3. Brahms, J., Maurizot, J. C., Michelson, A. M.: Conformational stability of dinucleotides in solution. J. molec. Biol.25, 481 (1967).

    Google Scholar 

  4. Brahms, J., Maurizot, J. C., Pilet, J.: Interactions contributing to the stability of a polynucleotide helical chain. Biochim. biophys. Acta (Amst.)186, 110 (1969).

    Google Scholar 

  5. Cook, D.: Relative basicity of alkyl benzenes. J. chem. Phys.25, 788 (1965).

    Google Scholar 

  6. Cox, R. A., Kanagalingam, K.: A spectrophotometric study of the secondary structure of RNA. Biochem. J.103, 749 (1967).

    Google Scholar 

  7. Guschlbauer, W., Courtois, Y., Bové, C., Bové, J. M.: Optical investigations on double stranded RNA from TYMV. Molec. gen. Genet.103, 150 (1968).

    Google Scholar 

  8. Hamaguchi, K., Geiduschek, E. P.: Effect of electrolytes on the stability of the DNA helix. J. Amer. chem. Soc.84, 1329 (1962).

    Google Scholar 

  9. Hamilton, L. D., Barclay, R. K., Wilkins, M. H. F., Brown, G. L., Wilson, H. R., Marvin, D. A., Ephrussi-Taylor, H., Simmons, N. S.: Similarity of the structure of DNA from a variety of sources. J. biophys. biochem. Cytol.5, 397 (1959).

    Google Scholar 

  10. Hartmann, H., Strehl, F.: To be published in Theor. Chim. Acta.

  11. Marmur, J., Schildkraut, C. L., Doty, P.: Biological and physical chemical aspects of the reversible denaturation of DNA. In: The molecular basis of neoplasia, p. 9. Houston: University of Texas Press 1962.

    Google Scholar 

  12. Maurizot, J. C., Wechter, Brahms, J., Sadron, Ch.: Comparison of conformational characteristics of arabinose and ribose containing dinucleoside phosphates. Nature (Lond.)219, 377 (1968).

    Google Scholar 

  13. —, Brahms, J., Eckstein, F.: Forces involved in the conformational stability of nucleic acids. Nature (Lond.)222, 559 (1969).

    Google Scholar 

  14. McDonald, C. C., Philipps, W. D.: NMR study of the secondary structure of s-RNA. Biopolymers3, 609 (1965).

    Google Scholar 

  15. ——, Penman, S.: Nucleic acids: a NMR study. Science144, 1234 (1964).

    Google Scholar 

  16. Melcher, G.: On the tertiary structure of t-RNA. FEBS-Letters3, 185 (1969).

    Google Scholar 

  17. —: A new hypothesis on the evolution of the genetic code. Biophysik7, 25 (1970).

    Google Scholar 

  18. - In preparation.

  19. Poland, D., Vournakis, J. N., Scheraga, H. A.: Cooperative interaction in single stranded oligomers of adenylic acid. Biopolymers4, 223 (1966).

    Google Scholar 

  20. Pullman, B.: Electronic structure of nucleic acids. In: Molecular Biophysics, p. 152, Pullman, B., Weissbluth, M., Eds. New York, London: Academic Press 1965.

    Google Scholar 

  21. Sinanoglu, O., Abdulnur, S.: Hydrophobic stacking and the solvent denaturation of DNA. Photochem. Photobiol.3, 333 (1964).

    Google Scholar 

  22. Sinsheimer, R. L.: A single stranded DNA from bacteriophageφ X 174. J. molec. Biol.1, 43 (1959).

    Google Scholar 

  23. Tamres, M.: Aromatic compounds as donor molecules in hydrogen bonding. J. Amer. chem. Soc.74, 3375 (1952).

    Google Scholar 

  24. Ts'o, P. O. P., Kondo, N. S., Schweizer, M. P., Hollis, D. P.: Studies of the conformation and interaction in dinucleoside mono- and diphosphates by PMR. Biochemistry8, 997 (1969).

    Google Scholar 

  25. Tunis, M.-J. B., Hearst, J. E.: ORD of DNA in concentrated salt solutions. Biopolymers6, 1218 (1968).

    Google Scholar 

  26. Vournakis, J. N., Scheraga, H. A., Rushizky, G. W., Sober, H. A.: Neighbour-neighbour interactions in single stranded polynucleotides. Biopolymers4, 33 (1966).

    Google Scholar 

  27. Wang, J. C., Baumgarten, D., Olivera, B. M.: On the origin of tertiary turns in covalently closed double stranded cyclic DNA. Proc. nat. Acad. Sci. (Wash.)58, 1852 (1967).

    Google Scholar 

  28. Yang, J. T., Samejima, T.: ORD and CD of nucleic acids. Progr. Nucl. Acid Res.9, 223 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melcher, G. The stabilisation of nucleic acid structures. Biophysik 7, 29–32 (1970). https://doi.org/10.1007/BF01189460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189460

Keywords

Navigation