Skip to main content
Log in

Effects of kainic acid and piperidine dicarboxylic acid on displaced bipolar cells in the turtle retina

  • Published:
Journal of Neurocytology

Summary

An immunoreaction against glutamate was used to visualize photoreceptors, bipolar, and ganglion cells in the turtle retina. Incubation of the retina prior to fixation in kainic acid (9 μm) led to selective loss of glutamate-like immunoreactivity in OFF-centre bipolar cells, as judged by the loss of staining in the distal half of the inner plexiform layer. In addition, displaced bipolar cells and ganglion cells lost their immunoreactivity. Incubation of the retina in 2,3-cis piperidine dicarboxylate (1mm) did not result in noticeable glutamate depletion in any cell but enhanced labelling in displaced bipolar cells. These findings suggest that all displaced bipolar cells in the turtle retina are depolarized by kainic acid and hyperpolarized by 2,3-cis piperidine dicarboxylate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. A. &Anctil, M. (1976)Retinas of Fishes. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Ammermüller, J., Muller, J. &Kolb, H. (1995.) The organization of the turtle inner retina. II. Analysis of colour-coded and directionally selective cells.Journal of Comparative Neurology, in press.

  • Brown, K. T. (1969) A linear area centralis extending across the turtle retina and stabilized to the horizon by non-visual clues.Vision Research 9, 1053–62.

    Google Scholar 

  • Detwiler, P. B. &Sarthy, P. V. (1981) Selective uptake of lucifer yellow by bipolar cells in the turtle retina.Neuroscience Letters 22, 227–32.

    Google Scholar 

  • Ehinger, B., Ottersen, O. P., Storm-Mathisen, J. &Dowling, J. E. (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate.Proceedings of the National Academy of Sciences (USA) 85, 8321–5.

    Google Scholar 

  • Ehrlich, D. &Morgan, I. G. (1980) Kainic acid destroys displaced amacrine cells in the post-hatch chicken retina.Neuroscience Letters 17, 43–8.

    Google Scholar 

  • Famiglietti, E. V., Kaneko, A. &Tachibana, M. (1977) Neuronal architecture of ON and OFF pathways to ganglion cells in carp retina.Science 198, 1267–9.

    Google Scholar 

  • Hepler, J. R., Toomin, C. S., McCarthy, K. D., Conti, C. F., Battaglia, G., Rustioni, A. &Petrusz, P. (1988) Characterization of antisera to glutamate and aspartate.Journal of Histochemistry and Cytochemistry 36, 13–22.

    Google Scholar 

  • Hurd, L. B., II &Eldred, W. D. (1989) Localization of GABA and GAD-like immunoreactivity in the turtle retina.Visual Neuroscience 3, 9–20.

    Google Scholar 

  • Ingham, C. A. &Morgan, I. G. (1983) Dose-dependent effects of intravitral kainic acid on specific cell types in chicken retina.Neuroscience 9, 165–81.

    Google Scholar 

  • Kleinschmidt, J., Zucker, C. L. &Yazulla, S. (1986) Neurotoxic action of kainic acid in the isolated toad and goldfish retina: I. Description of effects.Journal of Comparative Neurology 254, 184–95.

    Google Scholar 

  • Kolb, H. (1982) The morphology of the bipolar cells, amacrine cells and ganglion cells in the retina of the turtlePseudemys scripta elegans.Philosophical Transactions of the Royal Society of London, B 298, 355–93.

    Google Scholar 

  • Kouyama, N. &Ohtsuka, T. (1985) Quantitative morphological study of the outer nuclear layer in the turtle retina.Brain Research 345, 200–3.

    Google Scholar 

  • Marc, R. E., Liu, W. -L. S., Kalloniatis, M., Raiguel, S. F. &Van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina.Journal of Neuroscience 10, 4006–34.

    Google Scholar 

  • Matsumoto, N. &Naka, K. -I. (1972) Identification of intracellular responses in the frog retina.Brain Research 42, 59–71.

    Google Scholar 

  • Miller, R. F. &Slaughter, M. M. (1986) Excitatory amino acid receptors of the retina. Diversity of subtypes and conductance mechanisms.Trends in Neurosciences 9, 211–18.

    Google Scholar 

  • Morgan, I. G. &El-Lakany, S. (1982) Folic acid derivatives do not reproduce the neurotoxic effects of kainic acid on chicken retina.Neuroscience Letters 34, 69–73.

    Google Scholar 

  • Morgan, I. G. &Ingham, C. A. (1981) Kainic acid effects both plexiform layers of chicken retina.Neuroscience Letters 21, 275–80.

    Google Scholar 

  • Pow, D. V. &Robinson, S. R. (1994) Glutamate in some retinal neurons is solely derived from glia.Neuroscience 60, 355–66.

    Google Scholar 

  • Ramon Y Cajal, S. (1892) La rétine des vertébrés.La Cellule 9, 121–225.

    Google Scholar 

  • Richter, A. &Simon, E. J. (1975) Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina.Journal of Physiology 248, 317–34.

    Google Scholar 

  • Schütte, M. (1988) Die funktionelle Morphologie der serotonergen Structuren in der Schildkröten Retina. PhD Thesis, Ludwig-Maximilians-Universität, Munich.

    Google Scholar 

  • Schütte, M. &Schlemermeyer, E. (1993) Depolarization elicits, while hyperpolarization blocks uptake of endogenous glutamate by retinal horizontal cells of the turtle.Cell and Tissue Research 274, 553–8.

    Google Scholar 

  • Schütte, M. &Weiler, R. (1987) Morphometric analysis of serotonergic bipolar cells in the retina and its implications for retinal image processing.Journal of Comparative Neurology 260, 619–26.

    Google Scholar 

  • Schütte, M. &Witkovsky, P. (1991) Dopaminergic interplexiform cells and centrifugal fibres in theXenopus retina.Journal of Neurocytology 20, 195–207.

    Google Scholar 

  • Sherry, D. M. &Ulshafer, R. J. (1992) Neurotransmitter-specific identification and characterization of neurons in the all-cone retina ofAnolis carolinensis. II. Glutamate and aspartate.Visual Neuroscience 9, 313–23.

    Google Scholar 

  • Slaughter, M. M. &Miller, R. F. (1983) An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons.Science 219, 1230–2.

    Google Scholar 

  • Stone, S. &Schütte, M. (1991) Physiological and morphological properties of OFF- and ON-center bipolar cells in theXenopus retina. Effects of glycine and GABA,Visual Neuroscience 7, 363–76.

    Google Scholar 

  • Tauchi, M. (1990) Single cell shape and population densities of indoleamine-accumulating and displaced bipolar cells in Reeves' turtle retina.Proceedings of the Royal Society of London B238, 351–67.

    Google Scholar 

  • Weiler, R. (1981) The distribution of center-depolarizing and center-hyperpolarizing bipolar cell ramifications within the inner plexiform layer of the turtle retina.Journal of Comparative Physiology 144, 459–64.

    Google Scholar 

  • Weiler, R. &Schütte, M. (1985a) Morphological and pharmacological analysis of putative serotonergic bipolar cells in the retina of a turtle,Pseudemys scripta elegans.Cell and Tissue Research 241, 373–82.

    Google Scholar 

  • Weiler, R. &Schütte, M. (1985b) Kainic acid induced release of serotonin from OFF-center bipolar cells in the turtle retina.Brain Research 360, 379–83.

    Google Scholar 

  • Yaqub, A. &Eldred, W. D. (1993) Effects of excitatory amino acids on immunocytochemically identified populations of neurons in turtle retina.Journal of Neurocytology 22, 644–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütte, M. Effects of kainic acid and piperidine dicarboxylic acid on displaced bipolar cells in the turtle retina. J Neurocytol 24, 361–369 (1995). https://doi.org/10.1007/BF01189063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189063

Keywords

Navigation