Skip to main content
Log in

Nonlinear breakup of thin liquid sheets

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The breakup of thin planar liquid sheets due to the nonlinear growth of disturbances is determined. Conservation equations are derived using a control volume method and solved using MacCormack's predictor-corrector scheme. It is found that the size and geometry of ligaments, formed during breakup, vary with the weber number. Antisymmetric waves, which spontaneously intensify at higher values of the Weber number, give rise to thin ligaments. At lower values of the Weber number antisymmetric waves formed initially get transformed into symmetric interfaces giving larger ligaments. The magnitude of the initial amplitude of the disturbances is shown to strongly influence the disintegration. The results are compared with experimental results obtained for thin water sheets and good agreement is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Squire, H. B.: Investigation of the instability of a moving fluid film. Br. J. Appl. Phys.4, 167–169 (1953).

    Google Scholar 

  2. York, J. L., Stubbs, H. E., Tek, M. R.: The mechanism of disintegration of liquid sheets. Trans. ASME75, 1279–1286 (1953).

    Google Scholar 

  3. Hagerty, W. W., Shea, J. F.: A study of the stability of plane fluid sheets. J. Appl. Mech.22, 509–514 (1955).

    Google Scholar 

  4. Dombrowski, N., Hooper, P. C.: The effect of ambient density on drop formation in sprays. Chem. Eng. Sci.17, 291–305 (1962).

    Google Scholar 

  5. Ibrahim, E. A., Akpan, E. T.: Liquid sheet instability. Acta Mech.131, 153–167 (1998).

    Google Scholar 

  6. Li, X: On the instability of plane liquid sheet in two gas streams of unequal velocities. Acta Mech.106, 137–156 (1994).

    Google Scholar 

  7. Teng, C. H., Lin, S. P., Chen, J. N.: Absolute and convective instability of a viscous liquid curtain in a viscous gas. J. Fluid Mech.332, 105–120 (1997).

    Google Scholar 

  8. Clark, C. J., Dombrowski, N.: Aerodynamic instability and disintegration of inviscid liquid sheets. Proc. R. Soc. London.A 329, 467–478 (1972).

    Google Scholar 

  9. Jazayeri, S. A., Li, X.: Nonlinear instability of plane liquid sheet. J. Fluid Mech.406, 281–308 (2000).

    Google Scholar 

  10. Rangel, R. H., Hess, C.: Nonlinear spatial instability of a fluid sheet. AIAA Paper 90-0118, 28th Aerospace Sciences Meeting, Jan. 8–11, Reno, Nevada, 1990.

  11. Rangel, R. H., Sirignano, W. A.: The linear and nonlinear shear instability of a fluid sheet. Phys. FluidsA 3, 2392–2400 (1991).

    Google Scholar 

  12. Lozano, A., Olivares, A. G., Dopazo, C.: The instability growth leading to a liquid sheet breakup. Phys. Fluids10, 2188–2197 (1998).

    Google Scholar 

  13. Li, X., Tankin, R. S.: On the temporal instability of a two-dimensional viscous liquid sheet. J. Fluid Mech.226, 425–443 (1991).

    Google Scholar 

  14. Cousin, J., Dumouchel, C.: Effect of viscosity on the linear instability of a liquid sheet. Atom. Sprays6, 563–576 (1996).

    Google Scholar 

  15. Sellens, R. W.: A one-dimensional numerical model of capillary instability. Atom. Sprays2, 239–251 (1992).

    Google Scholar 

  16. Mehring, C., Sirignano, W. A.: Nonlinear capillary wave distortion and disintegration of plane liquid sheet. J. Fluid Mech.388, 69–113 (1999).

    Google Scholar 

  17. Kim, I., Sirignano, W. A.: Three-dimensional wave distortion and disintegration of planar liquid sheet. J. Fluid Mech.410, 147–183 (2000).

    Google Scholar 

  18. MacCormack, R. W.: Effect of viscosity in hyper velocity impact cratering. AIAA paper69–354, AIAA Hyper Velocity Impact Conference, April 30–May 2, Cincinnati, Ohio, 1969.

  19. MacCormack, R. W.: A numerical method for solving the equations of compressible viscous flow. AIAA paper81-0110, AIAA 19th Aerospace Sciences Meeting, Jan. 12–15, St. Louis, Missouri, 1981.

  20. Eggers, J., Dupont, T. F.: Drop formation in a one-dimensional approximation of the Navier-Stokes equation. J. Fluid Mech.262, 205–221 (1994).

    Google Scholar 

  21. Mansour, A., Chigier, N.: Effect of turbulence on the stability of liquid jets and resulting droplet size distributions. Atom. Sprays4, 583–604 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tharakan, T.J., Ramamurthi, K. & Balakrishnan, M. Nonlinear breakup of thin liquid sheets. Acta Mechanica 156, 29–46 (2002). https://doi.org/10.1007/BF01188740

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188740

Keywords

Navigation