Skip to main content
Log in

Action of vasopressin analog on neuronal excitability in helix lucorum

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Conclusions

  1. 1.

    The vaospressin analog in most cases increased the excitability of command neurons of the defensive reflex inHelix lucorum.

  2. 2.

    This effect is partially reversihle (it is abolished by rinsing out of the substance), but at least in the first stages, it is also cumulative on repeated applications of desglycine-arginine-vasopressin.

  3. 3.

    The mechanism of this action of desglycine-arginine-vasopressin may consist of activation of a pacemaker mechanism and also of a change in the threshold of action potential generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. I. P. Ashmarin, “Oligopeptide modulators of memory and pain,” Zh. Evol. Biokhim. Fiziol.13, No. 5, 570 (1977).

    Google Scholar 

  2. V. M. Vinogradov, V. T. Medvedev, A. T. Grechko, V. D. Bakharev, and M. A. PonomarevaStepnaya, “Effect of polypeptide fragments of ACTE and vasopressin on behavioral activity in rats,” Fiziol. Zh. SSSR,66, No. 3, 409 (1980).

    Google Scholar 

  3. R. I. Kruglikov, B. L. Brodskii, O. Kh. Koshtoyants, M. Yu. Markarova, G. I. Chipens, and O. S. Papsuevich, “Effect of vasopressin analog on the chemoreactive properties of sensomotor cortical neurons,” Byull. Éksp. Biol. Med.,96, No. 10, 3 (1983).

    Google Scholar 

  4. R. I. Kruglikov, V. M. Getsova, K. Jost, O. S. Papsuevich, and G. I. Chipens, “Effect of vasopressin analogs on resistance of the temporary connection to extinction,” Izv. Akad. Nauk SSSR, Ser. Biol., No. 1, 145 (1985).

    Google Scholar 

  5. E. G. Litvinov and P. M. Balaban, “Endogenous potentials in the organization of the spike response of a neuron to a sensory stimulus,” Zh. Vyssh. Nerv. Deyat.,23, No. 6, 1313 (1973).

    Google Scholar 

  6. E. G. Litvinov and D. B. Logunov, “Changes in excitability of the command neuron in the initial period of conditioned reflex formation in the snail,” Zh. Vyssh. Nerv. Deyat.,29, No. 2, 284 (1979).

    Google Scholar 

  7. V. I. Medvedev, V. D. Bakharev, O. A. Kaurov, and T. K. Lozhkina, “Effect of genetically related neuropeptides of the posterior lobe of the pituitary gland and their analogs on learning and memory processes,” Zh. Evol. Biokhim. Fiziol.,17, No. 1, 41 (1981).

    Google Scholar 

  8. S. A. Osipovskii and M. M. Polesskaya, “Molecular mechanisms of participation of peptides in functions of nerve cells,” Usp. Fiziol. Nauk,13, No. 4, 74 (1982).

    Google Scholar 

  9. A. S. Pivovarov, “Induction of plastic changes of excitability of electrogenic neuronal membranes during habituation,” Zh. Vyssh. Nerv. Deyat.,33, No. 1, 138 (1983).

    Google Scholar 

  10. M. M. Polesskaya and S. A. Osipovskii, “Comparative analysis of the action of peptides and noradrenalin on an identified bursting snail neuron,” Dokl. Akad. Nauk SSSR,261, No. 6, 1496 (1981).

    Google Scholar 

  11. E. N. Sokolov, “The pacemaker potential in the organization of rhythmic activity of the neuron,” in: The Pacemaker Potential of the Neuron [in Russian], Metsniereba, Tbilisi (1975), p. 7.

    Google Scholar 

  12. J. L. Barker, M. Ifshin, and H. Gainer, “Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones,” Brain Res.,84, No. 3, 501 (1975).

    Google Scholar 

  13. J. L. Barker and T. G. Smith, “Peptide regulation of neuronal membrane properties,” Brain Res.,103, No. 1, 167 (1976).

    Google Scholar 

  14. B. Bohus, R. Ader, and D. De Wied, “Effects of vasopressin on active and passive avoidance behavior,” Hormones Behav.,3, No. 1, 191 (1972).

    Google Scholar 

  15. B. Bohus, G. Kovacs, and D. De Wied, “Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes,” Brain Res.,157, No. 3, 414 (1978).

    Google Scholar 

  16. P. J. Delwaide, J. M. Devoitille, and M. Ylieff, “Acute effect of drugs upon memory of patients with senile dementia,” Acta Psychiat. Belg.,80, No. 5, 748 (1980).

    Google Scholar 

  17. D. De Wied and J. Jolles, “Neuropeptides derived from pro-opiocortin: behavioral, physiological and neurochemical effects,” Physiol. Rev.,62, No. 3, 976 (1982).

    Google Scholar 

  18. I. B. Levitan and S. N. Treistman, “Modulation of electrical activity and cyclic nucleotide metabolism in molluscan nervous system extract,” Brain Res.,136, No. 2, 307 (1977)

    Google Scholar 

  19. W. Lichtensteiger and D. Felix, “Vasopressin and ACTH 4-10: studies on individual giant dopamine neurons of the snailPlanorbis corneus,” in: Neuropeptides and Neural Transmitters, Proceedings of a UNESCO-IBRO Symposium, Jablonna, June 2–4, 1979, New York (1980), p. 333.

  20. M. Muhlethaler, J. J. Dreifuss, and B. H. Gahwiller, “Vasopressin excites hippocampal neurones,” Nature,296, No. 5859, 749 (1982).

    Google Scholar 

  21. E. T. Walters, I. H. Byrne, T. Y. Carew, and E. R. Kandel, “Mechanoafferent neurons innervating tail of Aplysia. II. Modulation by sensitizing stimulation,” J. Neurophysiol.,50, No. 6, 1544 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 36, No. 6, pp. 1116–1124, November–December, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashova, I.V., Logunov, D.B. Action of vasopressin analog on neuronal excitability in helix lucorum. Neurosci Behav Physiol 17, 407–414 (1987). https://doi.org/10.1007/BF01188730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188730

Keywords

Navigation