Archiv der Mathematik

, Volume 54, Issue 3, pp 258–259 | Cite as

An explicit model for the complex representations ofSn

  • N. F. J. Inglis
  • R. W. Richardson
  • X. Saxl


  1. [1]
    G. D.James and A.Kerber, The representation theory of the symmetric group. Encyclopedia Math. Appl.16, Reading, Mass. 1981.Google Scholar
  2. [2]
    A. A. Kljačko, Models for the complex representations of the groupsGL(n,q) and Wey1 groups. Soviet Math. Dokl.24, 496–499 (1981).Google Scholar
  3. [3]
    J. Saxl, On multiplicity-free permutation representations. In: Finite geometries and designs, London Math. Soc. Lecture Notes49, 337–353 (1981).Google Scholar
  4. [4]
    J. G.Thompson, Fixed point free involutions and finite projective planes. In: Finite simple groups II (ed. M. J. Collins), New York-London 1980.Google Scholar
  5. [5]
    R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring. Amer. J. Math.64, 371–388 (1942).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • N. F. J. Inglis
    • 1
  • R. W. Richardson
    • 2
  • X. Saxl
    • 1
  1. 1.D.P.M.M.S.Cambridge
  2. 2.Department of MathematicsAustralian National UniversityCanberraAustralia

Personalised recommendations