Skip to main content
Log in

Localization of voltage-sensitive sodium channels on the extrasynaptic membrane surface of mouse skeletal muscle by autoradiography of scorpion toxin binding sites

  • Published:
Journal of Neurocytology

Summary

Voltage-dependent sodium channels (Na+ channels) were localized by autoradiography on mouse skeletal muscle using both light and electron microscopy.125I-scorpion toxins (ScTx) of both the a and β type were used as probes. The specificity of labelling was verified by competitive inhibition with unlabelled toxin and by inhibition of αScTx labelling in depolarizing conditions. Under light microscopy, the labelling of the myocyte surface appeared randomly distributed with both the a and β toxins. No difference in the labelling density obtained with βScTx was observed between a 2 mm central segment of the fibre containing the endplate and an adjacent segment not containing the endplate. At the endplate, however, the βScTx binding site density was about seven fold higher at the edge of the synaptic primary clefts. This density decreased with distance from the synaptic cleft reaching the extrasynaptic value at 30–40 μm. An analysis of myocyte labelling using electron microscopy provided evidence for a specific, but very low labelling of the myocyte interior which can be attributed to the T-tubules. These results confirm a relatively high density of Na+ channels in a perijunctional zone about 50 μm in width, which could ensure the initial spread of the surface depolarization with a high safety factor, and a homogeneous distribution over the remaining surface with a low density evaluated at 5–10 per μm2. However, the very low labelling of T-tubules could be attributed mainly to a low density of tubular Na+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H. &Peachey, L. D. (1973) Reconstruction of the action potential of frog sartorius muscle.Journal of Physiology 235, 103–31.

    PubMed  Google Scholar 

  • Almers, W., Stanfield, P. R. &Stuhmer, W. (1983) Lateral distribution of sodium and potassium channels in frog skeletal muscle: Measurements with a patch-clamp technique.Journal of Physiology 336, 261–84.

    PubMed  Google Scholar 

  • Angelides, K. J. (1986) Fluorescently-labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres.Nature 321, 63–6.

    PubMed  Google Scholar 

  • Ariyasu, R. G., Deerinck, T. J., Levinson, S. R. &Ellisman, M. H. (1987) Distribution of (Na++K+)ATPase and sodium channels in skeletal muscle and electroplax.Journal of Neurocytology 16, 511–22.

    PubMed  Google Scholar 

  • Barhanin, J., Giglio, J. R., Leopold, P., Schmid, A., Sampaio, S. V. &Lazdunski, M. (1982)Tityus serrulatus venum contains two classes of toxins:Tityus γ toxin is a new tool with a very high affinity for studying the Na+ channel.Journal of Biological Chemistry 257, 12553–8.

    PubMed  Google Scholar 

  • Barhanin, J., Ildefonse, M., Rougier, O., Sampaio, S. V., Giglio, J. R. &Lazdunski, M. (1984)Tityus gamma toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane.Pflügers Archiv 400, 22–7.

    Google Scholar 

  • Beam, K. G., Caldwell, J. H. &Campbell, D. T. (1985) Na channels in skeletal muscle concentrated near the neuromuscular junction.Nature 313, 588–90.

    PubMed  Google Scholar 

  • Betz, W. J., Caldwell, J. H. &Kinnamon, S. C. (1984) Increased sodium conductance in the synaptic region of rat skeletal muscle fibres.Journal of Physiology 352, 189–202.

    PubMed  Google Scholar 

  • Boudier, J. A., Berwald-Netter, Y., Dellmann, H. D., Boudier, J. L., Couraud, F., Koulakoff, A. &Cau, P. (1985) Ultrastructural visualization of Na+-channel associated (125I) alpha-Scorpion toxin binding sites on fetal mouse nerve cells in culture.Developmental Brain Research 20, 137–42.

    Google Scholar 

  • Boudier, J. L., Jover, E. &Cau, P. (1988) Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using125I-alpha Scorpion toxin: Preferential labelling of glial cells.Journal of Neurostience 8, 1469–78.

    Google Scholar 

  • Caille, J., Ildefonse, M. &Rougier, O. (1975) Relations between membrane potential sodium currents and contraction in frog twitch muscle fibres.Journal of Physiology 249, 26–8.

    Google Scholar 

  • Caille, J., Ildefonse, M. &Rougier, O. (1978) Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction.Pfügers Archiv 374, 167–77.

    Google Scholar 

  • Caldwell, J. H., Campbell, D. T. &Beam, K. G. (1986) Na channel distribution in vertebrate skeletal muscle.Journal of General Physiology 87, 907–32.

    PubMed  Google Scholar 

  • Caldwell, J. H. &Milton, R. L. (1988) Sodium channel distribution in normal and denervated rodent and snake skeletal muscle.Journal of Physiology 401, 145–61.

    PubMed  Google Scholar 

  • Campbell, D. T. &Rille, B. (1976) Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle.Journal of General Physiology 67, 309–23.

    PubMed  Google Scholar 

  • Catterall, W. A. (1984) The molecular basis of neuronal exitability.Science 223, 653–61.

    PubMed  Google Scholar 

  • Cau, P., Massacrier, A., Boudier, J. L. &Couraud, F. (1985) Ultrastructural localization of voltage-sensitive sodium channels using [125I]alpha Scorpion toxin.Brain Research 334, 9–17.

    PubMed  Google Scholar 

  • Chiu, S. Y., Schrager, P. &Ritchie, J. M. (1984) Neuronaltype Na+ and K+ channels in rabbit cultured Schwann cells.Nature 311, 156–7.

    PubMed  Google Scholar 

  • Costantin, L. L. (1970) The role of sodium current in the radial spread of contraction in frog muscle fibres.Journal of General Physiology 55, 703–15.

    PubMed  Google Scholar 

  • Couraud, F., Jover, E., Dubois, J. M. &Rochat, H. (1982) Two types of Scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential channel.Toxicon 20, 9–16.

    PubMed  Google Scholar 

  • Dreyfus, P. Rieger, F., Murawsky, M., Garcia, L., Lombet, A., Fosset, M., Pauron, D., Barhanin, J. &Lazdunski, M. (1986) The voltage-dependent sodium channel is co-localized with the acetylcholine receptor at the vertebrate neuromuscular junction.Biochemical Biophysical Research Communication 139, 196–201.

    Google Scholar 

  • Eisenberg, B. R. &Kuda, A. M. (1976) Discrimination between fibre populations in mammalian skeletal muscle by using ultrastructural parameters.Journal of Ultrastructure Research 54, 76–88.

    PubMed  Google Scholar 

  • Eisenberg, B. R., Kuda, A. M. &Peter, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.Journal of Cell Biology 60, 732–54.

    PubMed  Google Scholar 

  • Fertuck, H. C. &Salpeter, M. M. (1974) Sensitivity in electron microscope autoradiography for125I.Journal of Histochemistry and Cytochemistry 22, 80–7.

    PubMed  Google Scholar 

  • Fertuck, H. C. &Salpeter, M. M. (1976) Quantitaton of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after125I-alpha bungarotoxin binding at mouse neuromuscular junction.Journal of Cell Biology 69, 144–58.

    PubMed  Google Scholar 

  • Flucher, B. E. &Daniels, M. P. (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 KD protein.Neuron 3, 163–75.

    PubMed  Google Scholar 

  • Haimovich, B., Bonilla, E., Casadei, J. &Barchi, R. (1984) Immunocytochemical localization of the mammalian voltage-dependent sodium channel using polyclonal antibodies against the purified protein.Journal of Neuroscience 4, 2259–68.

    PubMed  Google Scholar 

  • Haimovich, B., Scotland, D. L., Fieles, W. E. &Barchi, R. L. (1987) Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies.Journal of Neurostience 7, 2957–66.

    Google Scholar 

  • Hansen Bay, C. M. &Strichartz, G. R. (1980) Saxitoxin binding to sodium channels of rat skeletal muscles.Journal of Physiology 300, 89–103.

    PubMed  Google Scholar 

  • Hille, B. (1984)Ionic Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer Association.

    Google Scholar 

  • Jaimovich, E., Ildefonse, M., Barhanin, J., Rougier, O. &Lazdunski, M. (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: Voltage-clamp analysis and biochemical characterization of the receptor.Proceedings of the National Academy of Sciences of USA 79, 3896–900.

    Google Scholar 

  • Jaimovich, E., Venosa, R. A., Shrager, P. &Horowicz, P., (1976) Density and distribution of tetrodoxin receptors in normal and detubulated frog sartorius muscle.Journal of General Physiology 67, 399–416.

    PubMed  Google Scholar 

  • Karnovsky, M. J. &Rice, D. F. (1969) Exogenous cytochrome C as an ultrastructural tracer.Journal of Histochemistry and Cytochemistry 17, 751–3.

    PubMed  Google Scholar 

  • Kehle, T. &Herzog, V. (1989) A colloidal gold labelling technique for the direct determination of the surface area of eukaryotic cells.European Journal of Cell Biology 48, 19–26.

    PubMed  Google Scholar 

  • Land, B. R., Podleski, T. R., Salpeter, E. E. &Salpeter, M. M. (1977) Acetylcholine receptor distribution on myotubes in culture correlated to acetycholine sensitivity.Journal of Physiology 269, 155–76.

    PubMed  Google Scholar 

  • Larra, F. &Droz, B. (1970) Techniques radioautographiques et leur application a l'étude du renouvellement des constituants cellulaires.Journal de Microscopic 9, 845–80.

    Google Scholar 

  • Martin, M. F., Ferez, L. G., El Ayeb, M., Kopeyan, C., Bechis, G., Jover, E. &Rochat, H. (1987) Purification and chemical and biological characterizations of seven toxins from the mexican scorpion,Centruroides suffusus suffusus.Journal of Biological Chemistry 262, 4452–9.

    PubMed  Google Scholar 

  • McArdle, J. J., Angaut-Petit, D., Mallart, A., Bournaud, R., Faille, L. &Brigant, J. L. (1981) Advantages of the Triangularis sterni muscle of the mouse for investigations of synaptic phenomena.Journal of Neurostience Methods 4, 109–15.

    Google Scholar 

  • McDermott, A. B. &Westbrook, G. L. (1986) Early development of voltage-dependent sodium currents in cultured mouse spinal cord neurons.Developmental Biology 113, 317–26.

    PubMed  Google Scholar 

  • Pfeiffer, J. R., Oliver, J. M. &Berlin, R. D. (1980) Topographical distribution of coated pits.Nature 286, 727–9.

    PubMed  Google Scholar 

  • Ritchie, J. M. &Rogart, R. B. (1977) The binding of a labelled saxitoxin to the sodium channels in normal and denervated mammalian muscle, and in amphibian muscle.Journal of Physiology 269, 341–54.

    PubMed  Google Scholar 

  • Roberts, W. M. (1987) Sodium channels near end-plates and nuclei of snake skeletal muscle.Journal of Physiology 388, 213–32.

    PubMed  Google Scholar 

  • Rogers, A. W. (1979)Techniques of Autoradiography. Amsterdam: Elsevier, North Holland.

    Google Scholar 

  • Salpeter, M. M., Bachmann, L. &Salpeter, E. E. (1969) Resolution in electron microscope radioautography.Journal of Cell Biology 41, 1–20.

    PubMed  Google Scholar 

  • Salpeter, M. M., Budd, G. C. &Mattimoe, S. (1974) Resolution in autoradiography using semi-thin sections.Journal of Histochemistry and Cytochemistry 22, 217–22.

    PubMed  Google Scholar 

  • Salpeter, M. M., Fertuck, H. C. &Salpeter, E. E. (1977) Resolution in electron microscope autoradiography. III Iodine-125. The effect of heavy metal staining, and a reassessment of critical parameters.Journal of Cell Biology 72, 161–73.

    PubMed  Google Scholar 

  • Salpeter, M. M., Marchaterre, M. &Harris, R. (1988) Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle: Evaluated by using a scanning electron microscope procedure.Journal of Cell Biology 106, 2087–93.

    PubMed  Google Scholar 

  • Schrager, P., Chiu, S. Y. &Ritchie, J. M. (1985) Voltage dependant sodium and potassium channels in mammalian cultured Schwann cells.Proceeding of the National Academy of Sciences of USA 82, 948–52.

    Google Scholar 

  • Sherman, S. J., Lawrence, J. C., Messner, D. J., Jacoby, K. &Catterall, W. A. (1983) Tetrodotoxin-sensitive sodium channels in rat muscle cells developingin vitro.Journal of Biological Chemistry 258, 2488–95.

    PubMed  Google Scholar 

  • Waxman, S. G., Black, J. A., Kocsis, J. D. &Ritchie, J. M. (1989) Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve.Proceedings of the National Academy of Sciences of USA 86, 1406–10.

    Google Scholar 

  • Weibel, E. R. (1979)Stereological Methods. Vol.1. Practical Methods for Biological Morphometry. London: Academic Press.

    Google Scholar 

  • Williams, M. A. (1977) The analysis of electron microscope autoradiographs. InPractical methods in electron microscopy. Vol. 6. Quantitative methods in biology (edited byGlauert, A. M.), pp. 85–169. Amsterdam: North-Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Treut, T., Boudier, J.L., Jover, E. et al. Localization of voltage-sensitive sodium channels on the extrasynaptic membrane surface of mouse skeletal muscle by autoradiography of scorpion toxin binding sites. J Neurocytol 19, 408–420 (1990). https://doi.org/10.1007/BF01188407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188407

Keywords

Navigation