Skip to main content
Log in

High resolution quantitative EEG analysis

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

High resolution spectral methods are explored as an alternative to broad band spectral parameters (BBSP) in quantitative EEG analysis. In a previous paper (Valdes et al. 1990b) regression equations (“Developmental surfaces”) were introduced to characterize the age-frequency distribution of the mean and standard deviation of the log spectral EEG power in a normative sample. These normative surfaces allow the calculation of z transformed spectra for all derivations of the 10/20 system and z maps for each frequency. Clinical material is presented that illustrates how these procedures may pinpoint frequencies of abnormal brain activity and their topographic distribution, avoiding the frequency and spatial “smearing” that may occur using BBSP. The increased diagnostic accuracy of high resolution spectral methods is demonstrated by means of receiver operator characteristic (ROC) curve analysis. Procedures are introduced to avoid type I error inflation due to the use of more variables in this type of procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, A., Valdes, P. and Pascual, R. EEG developmental equations confirmed for Cuban schoolchildren. Electroenceph. clin. Neurophysiol., 1987, 67: 330–332.

    Google Scholar 

  • Alvarez, A., Valdes, P.A., Pascual, R.D., Galan, L., Biscay, R. and Bosch, J. On the structure of EEG development. Electroenceph. clin. Neurophysiol., 1989, 73: 10–19.

    Google Scholar 

  • Biscay, R., Valdes, P. and Pascual, R.D. Modified Fisher's linear discriminant function with reduction of dimensionality. Journal Stat. Comp. Simul, 1990, 36: 1–8.

    Google Scholar 

  • Biscay, R., Galan, L., Virues, T., Valdes, P., Virues, T., Neira, L. and Rojas, J. Localization error in biomedical imaging. Cornput. Biol. Med., 1992, 22: 277–286.

    Google Scholar 

  • Brillinger, D.R. Time series data analysis and theory. MRW-Inc, New York, 1975, Ch.7.

    Google Scholar 

  • Burgess, R.C. The scientific basis of computed neurophysiologic topography (Editorial). J. Clin. Neurophysiol., 1991, 7: 457–458.

    Google Scholar 

  • Duffy, F.H. Topographic mapping of electrical brain activity. Butterworths, Boston, 1986.

    Google Scholar 

  • John, E.R., Karmel, B.Z., Corning, W.C., Easton, P., Brown, D., Ahn, H., John, M., Harmony, T., Prichep, L., Toro, A., Gerson, I., Bartlett, F., Thatcher, R., Kaye, H., Valdes, P. and Schwartz, E. Neurometrics: numerical taxonomy identifies different profiles of brain dysfunctions within groups of behaviorally similar people. Science, 1977, 196: 1393–1410.

    Google Scholar 

  • John, E.R., Ahn, H., Prichep, L.S., Trepetin, M., Brown, D. and Kaye, H. Developmental equations for the electroencephalogram. Science, 1980, 210: 1255–1258.

    Google Scholar 

  • John, E.R., Prichep, L.S. and Easton, P. Normative data banks and neurometrics. Basic concepts, methods and results of norm constructions. In: A.S. Gevins and A. Remond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology, Vol I. Elsevier Science Publishers B.V. Amsterdam, 1987.

    Google Scholar 

  • John, E.R., Prichep, L.S. and Easton, P. Neurometrics: computer-assisted differential diagnosis of brain functions. Science, 1988, 239: 162–169.

    Google Scholar 

  • Katznelson, R.D. Linear operators on the multichannel data matrices. In: P.L. Nunez (Ed.), Electric Fields of the Brain. Oxford University Press, New York, 1981.

    Google Scholar 

  • Lopes da Silva, F. Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: E. Niedermeyer and F. Lopes da Silva (Eds.), Electroencephalography Basic Principles, Clinical Applications and Related Fields. Urban and Schwarzenberg. Baltimore-Munich, 1987.

    Google Scholar 

  • Nuwer, M.R. Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. Journal of Clinical Neurophysiology, 1988a, 5: 1–43.

    Google Scholar 

  • Nuwer, M.R. Quantitative EEG: II. Frequency analysis and topographic mapping in clinical settings. Journal of Clinical Neurophysiology, 1888b, 5: 45–85.

    Google Scholar 

  • Pascual, R.D., Valdes, P.A. and Alvarez, A. A parametric model for multichannel EEG spectra. Intern. J. Neuros., 1988a, 40: 89–99.

    Google Scholar 

  • Pascual, R., Gonzalez, S., Valdes, P. and Biscay, R. Current source density estimation and interpolation based on the Spherical Harmonic Fourier Expansion. Int. J. Neuros., 1988b, 43: 237–247.

    Google Scholar 

  • Pfurtscheller, G. Spatiotemporal analysis of alpha frequency components with the ERD technique. Brain Topogr., 1989, 2: 3–8.

    Google Scholar 

  • Scarpino, O., Guidi, M. and Bolcioni, G. Topographic EEG analysis. Methods for graphic representation and clinical applications. Acta Neurol. (Napoli.), 1990, 12: 410–426.

    Google Scholar 

  • Steriade, M., Gloor, P., Llinas, R.R., Lopes da Silva, F.H. and Mesulam, M.M. Basic mechanisms of cerebral rhythmic activities. Electroenceph. clin. Neurophysiol., 1990, 76: 481–508.

    Google Scholar 

  • Swets, J. Measuring the accuracy of diagnostic system. Science, 1988, 240: 1285–1293.

    Google Scholar 

  • Valdes, P. and Biscay, R. The statistical analysis of brain imaging. In: E.R. John (Ed.), Machinery of the Mind: Recent Advances in Basic and Clinical Neuroscience. Birkhauser, Boston, 1990a: 405–434.

    Google Scholar 

  • Valdes, P., Biscay, R., Galan, L., Bosch, J., Szava, S. and Virues, T. High resolution spectral EEG norms for topography. Brain Topography, 1990b, 3: 281–282.

    Google Scholar 

  • Valdes, P., Bosch, J., Grave, R., Hernandez, J., Riera, J., Pascual, R. and Biscay, R. Frequency domain models for the EEG. Brain Topography, 1992a, 4: 309–319.

    Google Scholar 

  • Valdes, P., Valdes, M., Carballo, J., Alvarez, A., Diaz, G., Biscay, R., Perez, M.C., Szava, S. and Virues, T. QEEG in a public health system. Brain Topography, 1992b, 4: 259–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szava, S., Valdes, P., Biscay, R. et al. High resolution quantitative EEG analysis. Brain Topogr 6, 211–219 (1994). https://doi.org/10.1007/BF01187711

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187711

Key words

Navigation