References
Bergman, G. M., (unpublished)
Birkhoff, G.: On the combination of subalgebras. Proc. Cambridge philos. Soc.29, 441–464 (1933)
Birkhoff, G.: Lattice Theory, 3rd ed. Colloquium Publications Vol. 25. Providence: American Mathematical Society 1967
Cohn, P. M.: Universal Algebra. New York: Harper and Row, 1965
Foster, A. L.: The generalized Chinese Remainder Theorem for universal algebras; subdirect factorization. Math. Z.66, 171–188 (1955)
Fried, E., Grätzer, G.: A non-associative extension of the class of distributive lattices. Pacific J. Math.49, 59–78 (1973)
Grätzer, G.: Universal Algebra, Princeton: Van Nostrand, 1968.
Grätzer, G.: Two Mal'cev type theorems in universal algebra. J. combinat. Theory8, 334–342 (1970)
Grätzer, G.: Lattice theory, first concepts and distributive lattices. San Francisco: W. H. Freeman, 1971
Huhn, A. P.: Weakly distributive lattices, (preprint)
Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scandinav.21, 110–121 (1967)
Michler, G., Wille, R.: Die primitiven Klassen arithmetischer Ringe, Math. Z.113, 369–372 (1970)
Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. math. Soc.14, 105–109 (1963)
Pixley, A. F.: Completeness in arithmetical algebras. Algebra universalis2, 179–196 (1972)
Taylor, W.: Characterizing Mal'cev Conditions. Algebra universalis3, 351–397 (1973)
Werner, H.: Produkte von Kongruenzklassengeometrien universeller Algebren. Math. Z.121, 11–140 (1971)
Werner, H.: A Mal'cev condition for admissible relations. Algebra universalis3, 263 (1973)
Whitman, P.: Free lattices II. Ann. of Math. II. Ser.43, 104–115 (1942)
Wille, R.: Kongruenzklassengeometrien. Lecture Notes in Mathematics113, Berlin-Heidelberg-New York: Springer 1970
Zariski, O., Samuel, P.: Commutative algebra, vol. I. Princeton: Van Nostrand 1958
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Baker, K.A., Pixley, A.F. Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems. Math Z 143, 165–174 (1975). https://doi.org/10.1007/BF01187059
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01187059