Skip to main content
Log in

Generalized debye series for acoustic scattering from objects of separable geometric shape

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In a classical paper of 1908, Debye has resolved the electromagnetic field scattered by a dielectric cylinder into a series of waves multiply internally reflected in the cylinder. For acoustic scattering by elastic cylinders, a corresponding series was derived from the conventional solution (obtained by satisfying the overall or global continuity conditions) by Brill and Überall, taking into account mode conversions of longitudinal (L) into transverse (T, shear) waves, or vice versa, upon internal scattering in a some-what involved fashion. In a series of papers, Gérard has shown that this approach could be greatly simplified by introducing local reflection and transmission coefficients at each interface, which is suitable for generalizing the Debye series to the case of elastic waves coupled by the continuity conditions at the external and each of any possible (multiple) internal interfaces of the scattering object. The approach is then applicable to all elastic objects for which surface and interfaces form coordinate surfaces of any separable geometry; the corresponding derivation is given here in the most general fashion, and is concretely illustrated by the examples of an elastic plate, infinite cylinder and sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debije, P.: Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens. Phys. Z.9, 775–778 (1908).

    Google Scholar 

  2. Airy, G. B.: On the intensity of light in the neighborhood of a caustic. Trans. Camb. Phil. Soc.6, 379–402 (1838).

    Google Scholar 

  3. Wirtinger, N.: Ber. Naturw.-med. Vereins in Innsbruck23, 7–15 (1897).

    Google Scholar 

  4. Bromwich, T. J. l'A.: Normal coordinates in dynamical systems. Proc. London Math. Soc.15, 401–448 (1916).

    Google Scholar 

  5. Lord Rayleigh: Theory of sound. New York: Dover 1945.

    Google Scholar 

  6. Van der Pol, B., Bremmer, H.: The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Phil. Mag.24, 141–176; 825–864 (1937).

    Google Scholar 

  7. Franz, W.: Theorie der Beugung elektromagnetischer Wellen. Berlin: Springer 1957.

    Google Scholar 

  8. Nussenzveig, H. M.: High-frequency scattering by a transparent sphere. I. Direct reflection and transmission. J. Math. Phys.10, 82–124 (1969); II Theory of the rainbow and the glory. J. Math. Phys.10, 125–176 (1969).

    Google Scholar 

  9. Nagase, M.: Diffraction of elastic waves by a spherical surface. J. Phys. Soc. Japan11, 279–301 (1956).

    Google Scholar 

  10. Scholte, J. G. J.: On seismic waves in a spherical earth. Koninklijk Nederlands Meteorologisch Instituut, Commun. No65, The Hague (1956).

  11. Gérard, A.: Diffraction d'ondes de cisaillement par une sphère élastique. C. R. Acad. Sci. Paris278, 1055–1057 (1974); Ondes de cisaillement diffractées par une sphère élastique. J. Méc.15, 427–456 (1976).

    Google Scholar 

  12. Brill, D., Überall, H.: Transmitted waves in the diffraction of sound from liquid cylinders. J. Acoust. Soc. Am.47, 1467–1469 (1970).

    Google Scholar 

  13. Derem, A.: Serie des ondes transmises pour un cylindre fluide et creux: une solution exacte. Rev. CETHEDEC73, 1–27 (1982).

    Google Scholar 

  14. Brill, D., Überall, H.: Acoustic waves transmitted through solid elastic cylinders. J. Acoust. Soc. Am.50, 921–939 (1971).

    Google Scholar 

  15. Pao, Y. H., Gajewski, R. R.: In: Physical acoustic13, (Mason, W. P., Thurston, R. N., eds.) pp 183–265. New York: Academic Press 1977.

    Google Scholar 

  16. Gérard, A.: Champ résultant de l'incidence d'ondes P ou SV sur une sphère élastique. C. R. Acad. Sci. Paris289, 237–240 (1979).

    Google Scholar 

  17. Courant, R., Hilbert, D.: Methods of mathematical physics. vol. 1. New York: Interscience 1953.

    Google Scholar 

  18. Conoir, J. M.: Réflexion et transmission pour une plaque fluide. In: La diffusion acoustique (Gespa, N., Poirée, B., eds.), pp. 105–132, Paris: CEDOCAR 1987.

    Google Scholar 

  19. Danthez, J. M., Deschamps, M., Gérard, A.: Réponse spatio-temporelle d'un guide cylindrique solide a un faisceau borné. I. Partie théorique. J. Acoust.2, 119–125 (1989).

    Google Scholar 

  20. Conoir, J. M., Gérard, A., Derem, A.: Ondes acoustiques transmises et séries de Debye généralisées. I. Traitement des interfaces planes. J. Acoust.4, 159–200 (1991).

    Google Scholar 

  21. Deschamps, M., Cao, C.: Reflection/refraction of a solid layer by Debye's series expansion. Ultrasonics29, 288–293 (1991).

    Google Scholar 

  22. Gérard, A.: Scattering of SH waves by a spherical layer. Int. J. Eng. Sci.17, 313–327 (1979).

    Google Scholar 

  23. Gérard, A.: Champ résultant de l'incidence d'ondes P et SV sur un milieu stratifié à symétrie sphérique. C. R. Acad. Sci. Paris Ser. B,290, 43–46 (1980).

    Google Scholar 

  24. Gérard, A.: Diffraction d'ondes SH par un milieu stratifié sphérique. Int. J. Eng. Sci.18, 583–595 (1980).

    Google Scholar 

  25. Gérard, A.: Propagation d'ondes SH en présence d'une sphère multicouche. Rev. CETHEDEC64, 45–66 (1980).

    Google Scholar 

  26. Gérard, A.: Propagation d'ondes élastiques dans un multicouche à symétrie sphérique: solution exacte et interprétation. Rev. CETHEDEC72, 11–18 (1982).

    Google Scholar 

  27. Gérard, A.: Diffusion d'ondes SH par un milieu élastique stratifié à symétrie sphérique. Rev. Acoust.63, 250–252 (1982).

    Google Scholar 

  28. Gérard, A.: Factorisation de l'équation caractéristique d'une sphère élastique multi-couches: interprétation des résonances. C. R. Acad. Sci. Paris Ser. 2297, 17–19 (1983).

    Google Scholar 

  29. Gérard, A.: Scattering by spherical elastic layers: exact solution and interpretation for a scalar field. J. Acoust. Soc. Am.73, 13–17 (1983).

    Google Scholar 

  30. Gérard, A.: Coupled P and SV waves propagating in spherical elastic layers. Int. J. Eng. Sci.21, 617–625 (1983).

    Google Scholar 

  31. Gérard, A.: Formalisme modal: interprétation. In: La diffusion acoustique (Poirée, B., Gespa, N., eds.). Paris: CEDOCAR, 1987.

    Google Scholar 

  32. Conoir, J. M.: Diffusion acoustique en géométrie séparable: une méthode d'acquisition des séries de Debye généralisées. C. R. Acad. Sci. Paris301, 471–473 (1985).

    Google Scholar 

  33. Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw Hill 1953.

    Google Scholar 

  34. Gérard, A.: Théorie modale et série de Debye généralisée. lère Ecole d'Hiver sur la Diffusion Acoustique, Cauterets, France, February 9–15, 1992.

  35. Derem, A.: Théorie de la matrice S et transformation de Sommerfeld-Watson dans la diffusion acoustique. In: Gespa, N.: La diffusion acoustique (Poirée, B., ed.). Paris: CEDOCAR, 1987.

    Google Scholar 

  36. Flax, L., Dragonette, L. R., Überall, H.: Theory of elastic resonance excitation by sound scattering. J. Acoust. Soc. Am.63, 723–731 (1978); How the resonance scattering theory was established. In: Acoustic resonance scattering (Überall, H., ed.). New York: Gordon and Breach 1992.

    Google Scholar 

  37. Wheeler J. A.: On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev.52, 1107–1122 (1937).

    Google Scholar 

  38. Heisenberg, W.: Die beobachtbaren Größen in der Theorie der Elementarteilchen. Z. Phys.120, 513–538 and 673–702 (1943).

    Google Scholar 

  39. Sokolnikoff, I. S.: Mathematical theory of elasticity. New York: McGraw Hill 1956.

    Google Scholar 

  40. Grosse-Tête, A., Gérard, A., Rousselot, J. L.: Influence d'un milieu élastique dissipatif sur la diffusion acoustique d'objects clindriques. Trait. Signal2, 397–400 (1985).

    Google Scholar 

  41. Gérard, A., Rousselot, J. L.: Diffusion à basse fréquence d'une coque sphérique immergée. Rev. CETHEDEC78, 121–133 (1984).

    Google Scholar 

  42. Maze, G., Ripoche, J.: Méthode d'isolement et d'identification des Resonances (M.I.I.R.) de cylindres et de tubes soumis à une onde acoustique plane dans l'eau. Rev. Phys. Appl.18, 319–326 (1983).

    Google Scholar 

  43. Schuetz, L. S., Neubauer, W. G.: Acoustic reflexion from cylinders non absorbing and absorbing. J. Acoust. Soc. Am.62, 513–517 (1977).

    Google Scholar 

  44. Rousselot, J. L., Gérard, A., Sessarego, J. P., Sageloli, J.: Réponse basse fréquence d'une coque sphérique mince immergée. Acustica66, 203–213 (1988).

    Google Scholar 

  45. Gérard, A., Rousselot, J. L., Izbicki, J. L., Maze, G., Ripoche, J.: Résonance des ondes d'interface coques cylindriques minces immergées: détermination et interprétation. Rev. Phys. Appl.23, 289–299 (1988).

    Google Scholar 

  46. Izbicki, J. L., Rousselot, J. L., Gérard, A., Maze, G., Ripoche, J.: Analysis of resonances related to Scholte-Stoneley waves around circular cylindrical shells. J. Acoust. Soc. Am.90, 2602–2608 (1991).

    Google Scholar 

  47. Überall, H., Gérard, A., Guran, A., Duclos, M., El Hocine Khelil, M., Bao, X. L., Raju, P. K.: Acoustic scattering resonances: relation to external and internal surface waves. Appl. Mech. Rev.49, 563–571 (1996).

    Google Scholar 

  48. Gérard, A.: Generalized Debye series for acoustic scattering: some applications. In: New perspectives on problems of classical and quantum physics, part 2: Acoustic propagation and scattering, electromagnetic scattering (Delsanto, P. P., Saenz, A. W., eds.), pp. 113–138. Gordon & Breach (1988).

  49. Borejko, P.: Reflection and transmission coefficients for three-dimensional plane waves in elastic media. Wave Motion34, 371–393 (1996).

    Google Scholar 

  50. Borejko, P., Ziegler, F.: Pulsed asymmetric point force loading of a layered half-space. In: Acoustic interactions with submerged elastic structures, Part 4 on Non-destructive testing, acoustic wave propagation and scattering (Guran, A., Boström, A., Leroy, O., eds.), Ch. 1. Singapore: World Scientific 1996.

    Google Scholar 

  51. Conoir, J.-M., Lenoir, O., Izbicki, J.-L.: Interference in elastic plates, chapter 9. In: Acoustic interactions with submerged elastic structures (Guran, A., Ripoche, J., Ziegler, F., eds.), pp. 275–309. New Jersey: World Scientific 1996.

    Google Scholar 

  52. Danila, E. B., Conoir, J.-M., Izbicki, J.-L.: Generalized Debye series expansion: treatment of the eccentric and noneccentric cylindrical fluid-fluid interfaces. J. Acoust. Soc. Am.98, 3326–3342 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérard, A., Überall, H. & Guran, A. Generalized debye series for acoustic scattering from objects of separable geometric shape. Acta Mechanica 132, 147–176 (1999). https://doi.org/10.1007/BF01186965

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186965

Keywords

Navigation