Skip to main content
Log in

The effect of a uniform vertical magnetic field on the onset of oscillatory marangoni convection in a horizontal layer of conducting fluid

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper we use classical linear stability theory to undertake a detailed investigation of the effect of a uniform vertical magnetic field on the onset of oscillatory thermocapillary-driven Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid heated from below. For simplicity we restrict our attention to the simplest case of a fluid layer with a non-deformable free surface and perfectly electrically conducting boundaries in which the onset of convection is always steady in the absence of the magnetic field. The present numerical calculations show that the presence of the magnetic field can cause the preferred mode of instability to be oscillatory rather than steady convection. Nevertheless, in all the cases investigated the effect of the magnetic field is always to stabilise the layer relative to the case of no magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwabe, D.: Surface-tension-driven flow in crystal growth melts. Crystals11, 75–112 (1988).

    Google Scholar 

  2. Pearson, J. R. A.: On convection cells induced by surface tension. J. Fluid Mech.4, 489–500 (1958).

    Google Scholar 

  3. Scriven, L. E., Sternling, C. V.: On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid. Mech.19, 321–340 (1964).

    Google Scholar 

  4. Smith, K. A.: On convective instability induced by surface-tension gradients. J. Fluid. Mech.24, 401–414 (1966).

    Google Scholar 

  5. Takashima, M.: Surface tension driven instability in a horizontal liquid layer with a deformable free surface. I. Stationary Convection. J. Phys. Soc. Jpn.50, 2745–2750 (1981).

    Google Scholar 

  6. Vidal, A., Acrivos, A.: Nature of the neutral state in surface-tension driven convection. Phys. Fluids9, 615–616 (1966).

    Google Scholar 

  7. Takashima, M.: Nature of the neutral state in convective instability induced by surface tension and buoyancy. J. Phys. Soc. Jpn.28, 810 (1970).

    Google Scholar 

  8. Takashima, M.: Surface tension driven instability in a horizontal liquid layer with a deformable free surface. II. Overstability. J. Phys. Soc. Jpn.50, 2751–2756 (1981).

    Google Scholar 

  9. Garcia-Ybarra, P. L., Castillo, J. L., Velarde, M. G.: Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids30, 2655–2661 (1987).

    Google Scholar 

  10. Gouesbet, G., Maquet, J., Rozé, C., Darrigo, R.: Surface-tension and coupled buoyancy-driven instability in a horizontal liquid layer: overstability and exchange of stability. Phys. Fluids A2, 903–911 (1990).

    Google Scholar 

  11. Pérez-García, C., Carneiro, G.: Linear stability of Bénard-Marangoni convection in fluids with a deformable free surface. Phys. Fluids A3, 292–298 (1991).

    Google Scholar 

  12. Hashim, I., Wilson, S. K.: The onset of Bénard-Marangoni convection in a horizontal layer of fluid. (to appear).

  13. Regnier, V. C., Lebon, G.: Time-growth and correlation length of fluctuations in thermocapillary convection with surface deformation. Q. J. Mech. Appl. Math.48, 57–75 (1995).

    Google Scholar 

  14. Wilson, S. K., Thess, A.: On the linear growth rates of the long-wave modes in Bénard-Marangoni convection. Phys. Fluids9, 2455–2457 (1997).

    Google Scholar 

  15. Nield, D. A.: Surface tension and buoyancy effects in the cellular convection of an electrically conducting liquid in a magnetic field. ZAMP17, 131–139 (1966).

    Google Scholar 

  16. Maekawa, T., Tanasawa, I.: Effect of magnetic field on onset of Marangoni convection. Int. J. Heat Mass Transfer31, 285–293 (1988).

    Google Scholar 

  17. Sarma, G. S. R.: Marangoni convection in a fluid layer under the action of a transverse magnetic field. Space Res.19, 575–578 (1979).

    Google Scholar 

  18. Sarma, G. S. R.: Marangoni convection in a liquid layer under the simultaneous action of a transverse magnetic field and rotation. Adv. Space Res.1, 55–58 (1981).

    Google Scholar 

  19. Sarma, G. S. R.: Bénard-Marangoni instability in a rotating liquid layer subjected to a transverse magnetic field. Adv. Space Res.3, 33–36 (1983).

    Google Scholar 

  20. Sarma, G. S. R.: Effects of interfacial curvature and gravity waves on the onset of thermocapillary convective instability in a rotating liquid layer subjected to a transverse magnetic field. Physicochem. Hydrodyn.6, 283–300 (1985).

    Google Scholar 

  21. Sarma, G. S. R.: Interaction of surface-tension and buoyancy mechanisms in horizontal liquid layers. J. Thermophys.1, 129–135 (1987).

    Google Scholar 

  22. Sarma, G. S. R.: Interfacial effects on the onset of convection in horizontal liquid layers. In: Physicochemical hydrodynamics (Velarde, M. G., ed.), pp. 271–289. New York: Plenum Publishing Corporation 1988.

    Google Scholar 

  23. Wilson, S. K.: The effect of a uniform magnetic field on the onset of Marangoni convection in a layer of conducting fluid. Q. J. Mech. Appl. Math.46, 211–248 (1993).

    Google Scholar 

  24. Wilson, S. K.: The effect of a uniform magnetic field on the onset of steady Bénard-Marangoni convection in a layer of conducting fluid. J. Eng. Math.27, 161–188 (1993).

    Google Scholar 

  25. Wilson, S. K.: The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary. Phys. Fluids6, 3591–3600 (1994).

    Google Scholar 

  26. Thess, A., Nitschke, K.: On Bénard-Marangoni instability in the presence of a magnetic field. Phys. Fluids7, 1176–1178 (1995).

    Google Scholar 

  27. Nitschke, K., Thess, A., Gerbeth, G.: Linear stability of Marangoni-Hartmann convection. In: Microgravity fluid mechanics (Rath, H. J., ed.), pp. 285–296. Berlin Heidelberg New York Tokyo: Springer 1992.

    Google Scholar 

  28. Wilson, S. K.: The effect of a uniform magnetic field on the onset of oscillatory Marangoni convection in a layer of molten silicon. Micrograv. Sci. Technol.7, 228–233 (1994).

    Google Scholar 

  29. Kaddame, A., Lebon, G.: Overstability in Marangoni convection of an electrically conducting fluid in presence of an external magnetic field. Micrograv. Q.3, 1–6 (1993).

    Google Scholar 

  30. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Oxford: Oxford University Press 1961.

    Google Scholar 

  31. Abdullah, A. A., Lindsay, K. A.: Bénard convection in a non-linear magnetic fluid. Acta Mech.85, 27–42 (1990).

    Google Scholar 

  32. Nield, D. A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech.19, 341–352 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashim, I., Wilson, S.K. The effect of a uniform vertical magnetic field on the onset of oscillatory marangoni convection in a horizontal layer of conducting fluid. Acta Mechanica 132, 129–146 (1999). https://doi.org/10.1007/BF01186964

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186964

Keywords

Navigation