Skip to main content
Log in

Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis

  • Published:
Journal of Neurocytology

Summary

The postnatal development of the heterozygous Lurcher (Lc/+) mouse cerebellum is characterized by Purkinje cell death with a concomitant reduction in granule cell number. In order to evaluate possible relationships between these two events, this study investigates early morphological abnormalities of the Purkinje cells and possible defects in the formation of their synaptic investment. Cerebella of Lurcher and control age-matched (from P8 to P16) mice were analysed by calbindin immunostaining, silver impregnation and quantitative electron microscopy. Direct signs of Purkinje cell anomaly are obvious from P8, four days before the onset of the necrotic process. These signs include the presence of axonal swellings and perinuclear clumps of chromatin, and a general delayed process of maturation, evidenced in cell bodies (incomplete development of the basal polysomal mass) and in dendritic trees (hyperspinous dendrites, delayed formation of proximal and distal compartments). Also from P8, the external granular layer is reduced in thickness. Despite these abnormalities, the onset of the synaptogenesis between Purkinje cells and their specific inputs (parallel fibres, climbing fibres and basket cell axons) takes place on schedule and, at P8, no defect has been noticed. On and after P10, the rate of parallel fibre synaptogenesis is decreased. Very few climbing fibres translocate from their perisomatic to their peridendritic locations, and basket cell axons fail to develop ‘pinceau’ formations. All these results suggest that before the death of the Purkinje cell by P12, there is an impaired maturation of these neurons provoked by the Lurcher gene action. The hypoplasia of the external granular layer and the altered synaptic investment of the Purkinje cell after P10 are considered to be consequences of the early Purkinje cell defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, J. (1969) Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats.Journal of Comparative Neurology 136, 269–94.

    Google Scholar 

  • Altman, J. (1972a) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer.Journal of Comparative Neurology 145, 353–98.

    Google Scholar 

  • Altman, J. (1972b) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer.Journal of Comparative Neurology 145, 399–464.

    Google Scholar 

  • Bradley, P. &Berry, M. (1978) The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of Weaver and Staggerer mice.Brain Research 142, 135–41.

    Google Scholar 

  • Caddy, K. W. T. &Biscoe, T. J. (1979) Structural and quantitative studies on the normalC3H and Lurcher mutant mouse.Philosophical Transactions of the Royal Society of London B 287, 167–201.

    Google Scholar 

  • Caddy, K. W. T. &Herrup, K. (1990) Studies of thedendritic tree of wild-type cerebellar Purkinje cells in Lurcher chimeric mice.Journal of Comparative Neurology 297, 121–31.

    Google Scholar 

  • Caddy, K. W. T. &Herrup, K. (1991) The fine structure of the Purkinje cell and its afferents in Lurcher chimeric mice.Journal of Comparative Neurology 305, 421–34.

    Google Scholar 

  • Caviness, V. S. &Rakic, P. (1978) Mechanisms of cortical development: a view from mutations in mice.Annual Review of Neuroscience 1, 297–326.

    Google Scholar 

  • Clarke, P. G. H. (1990) Developmental cell death: morphological diversity and multiple mechanisms.Anatomy and Embryology 181, 195–213.

    Google Scholar 

  • Crepel, F. (1982) Regression of functional synapses in the immature mammalian cerebellum.Trends in Neurosciences 5, 266–9.

    Google Scholar 

  • Crepel, P., Mariani, J. &Delhaye-Bouchaud, N. (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibres in the immature rat cerebellum.Journal of Neurobiology 7, 567–78.

    Google Scholar 

  • Crepel, F., Delhaye-Bouchaud, N. &Dupont, J. L. (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibres in immature control, X-irradiated and hypothyroid rats.Developmental Brain Research 1, 59–71.

    Google Scholar 

  • Das, G. D. (1977) Experimental analysis of embryogenesis of cerebellum in rat. I. Subnormal growth following X-ray irradiation on day 15 of gestation.Journal of Comparative Neurology 176, 419–34.

    Google Scholar 

  • Delhaye-Bouchaud, N., Rabacchi, S., Bailly, Y., Herrup, K. &Mariani, J. (1991) Recent studies on the mechanism of synapse elimination in the developing cerebellum.European Journal of Neuroscience Suppl.4, 82.

    Google Scholar 

  • Feldman, S. C. &Christakos, S. (1983) Vitamin D-dependent calcium-binding protein in rat brain: biochemical and immunocytochemical characterization.Endocrinology 112, 290–302.

    Google Scholar 

  • Fortier, P. A., Smith, A. M. &Rossignol, S. (1987) Locomotor deficits in the mutant mouse, Lurcher.Experimental Brain Research 66, 271–86.

    Google Scholar 

  • Ghetti, B., Alyea, C. J. &Muller, J. (1978) Studies on the Purkinje cell degeneration (pcd) mutant: primary pathology and transneuronal changes.Journal of Neuropathology and Experimental Neurology 37, 617.

    Google Scholar 

  • Gravel, C., Leclerc, N., Plioplys, A. &Hawkes, R. B. (1986) Focal axonal swellings in rat cerebellar Purkinje cells during normal development.Brain Research 363, 325–32.

    Google Scholar 

  • Guénet, J. L., Sotelo, S. &Mariani, J. (1983) Hyperspiny Purkinje cell, a new neurological mutation in the mouse.Journal of Heredity 74, 105–8.

    Google Scholar 

  • Heckroth, J. A., Goldowitz, D. &Eisenman, L. M. (1990) Olivocerebellar fibre maturation in normal and mutant mice: defective development in lurcher.Journal of Comparative Neurology 291, 415–30.

    Google Scholar 

  • Herrup, K. &Mullen, R. J. (1979) Staggerer chimeras: intrinsic nature of Purkinje cell defects and implications for normal cerebellar development.Brain Research 178, 443–57.

    Google Scholar 

  • Hillman, D. E. &Chen, S. (1981) Vulnerability of cerebellar development in malnutrition. II. Intrinsic determination of total synaptic area on Purkinje cell spines.Neuroscience 6, 1263–75.

    Google Scholar 

  • Inouye, M. &Murakami, U. (1980) Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum.Journal of Comparative Neurology 194, 499–503.

    Google Scholar 

  • Landis, D. M. D. &Sidman, R. L. (1973) Cerebellar cortical development in the staggerer mouse.Journal of Neuropathology and Experimental Neurology 33, 180.

    Google Scholar 

  • Landis, D. M. D. &Sidman, R. L. (1978) Electron microscopic analysis of postsnatal histogenesis in the cerebellar cortex of staggerer mutant mice.Journal of Comparative Neurology 179, 831–64.

    Google Scholar 

  • Larramendi, L. M. H. (1969) Analysis of synaptogenesis in the cerebellum of the mouse. InNeurobiology of cerebellar evolution and development (edited byLlinas, R.) pp. 803–43. Chicago: American Medical Association.

    Google Scholar 

  • Larramendi, L. M. H. &Victor, T. (1967) Synapses on the Purkinje cell spines in the mouse. An electronmicroscopic study.Brain Research 5, 15–30.

    Google Scholar 

  • Legrand, C., Thomasset, M., Parkes, C. O., Clavel, M. C. &Rabie, A. (1983) Calcium-binding protein in the developing rat cerebellum: an immunohistochemical study.Cell and Tissue Research 233, 389–402.

    Google Scholar 

  • Mariani, J. &Changeux, J. -P. (1981) Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibres in the developing rat cerebellum.Journal of Neuroscience 1, 696–702.

    Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. -P. &Sotelo, C. (1977) Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse.Philosophical Transactions of the Royal Society of London B 281, 1–28.

    Google Scholar 

  • Mariani, J., Benoit, P., Hoang, M. D., Thomson, M. A. &Delhaye-Bouchaud, N. (1990) Extent of multiple innervation of cerebellar Purkinje cells by climbing fibres in adult X-irradiated rats. Comparison of different schedules of irradiation during the first postnatal week.Developmental Brain Research 57, 63–70.

    Google Scholar 

  • Meller, K. &Glees, P. (1969) The development of the mouse cerebellum. A Golgi and electron microscopical study. InNeurobiology of cerebellar evolution and development (edited byLlinas, R.) pp. 783–801. Chicago: American Medical Association.

    Google Scholar 

  • Mullen, R. J. (1982) Analysis of CNS development with mutant mice and chimeras. InGenetic approaches to developmental neurobiology (edited byTsukada, Y.) pp. 183–93. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Mullen, R. J., Eicher, E. M. &Sidman, R. L. (1976) Purkinje cell degeneration, a new neurological mutation in the mouse.Proceedings of the National Academy of Sciences (USA)73, 208–12.

    Google Scholar 

  • Nicholson, J. L. &Altman, J. (1972a) The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation.Brain Research 44, 13–23.

    Google Scholar 

  • Nicholson, J. L. &Altman, J. (1972b) The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer.Brain Research 44, 25–36.

    Google Scholar 

  • Nosal, G. &Radouco-Thomas, C. (1971) Ultrastructural study on the differentiation and development of the nerve cell; the ‘nucleus-ribosome’ system.Advances in Cytopharmacology 1, 433–56.

    Google Scholar 

  • Palay, S. L. &Chan-Palay, V. (1974)Cerebellar cortex.Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Phillips, R. J. S. (1960) ‘Lurcher’, a new gene in linkage group XI of the house mouse.Journal of Genetics 57, 35–42.

    Google Scholar 

  • Rakic, P. (1976) Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by single gene mutations in mice.Cold Spring Harbor Symposia on Quantitative Biology 40, 333–46.

    Google Scholar 

  • Ramón Y Cajal, S. (1911)Histologie du systeme nerveux de l'homme et des vertébrés. Reprinted by Consejo Superior de Investigaciones Cientificas, Inst. Ramón y Cajal, Tome II, Madrid, 1955.

    Google Scholar 

  • Ramón, Y., Cajal, S. (1928)Degeneration and regeneration of the nervous system. (Facsimile of 1928 edition in 2 vols., translated by May, R. M.) New York: Hafner Press.

    Google Scholar 

  • Ramón, Y., Cajal, S. &De Castro, F. (1972)Elementes de Tecnica Micrografica del Sistema Nervioso. Barcelona: Salvat.

    Google Scholar 

  • Robain, O., Bideau, I. &Farkas, E. (1981) Developmental changes of synapses in the cerebellar cortex of the rat. A quantitative analysis.Brain Research 206, 1–8.

    Google Scholar 

  • Rosenfeld, J. &Friedrich, V. L. Jr (1983) Axonal swellings in jimpy mice: does lack of myelin cause neuronal abnormalities?Neuroscience 10, 959–66.

    Google Scholar 

  • Rossi, F., Cantino, D. &Strata, P. (1987) Morphology of Purkinje cell axon terminals in intracerebellar nuclei following inferior olive lesions.Neuroscience 22, 99–112.

    Google Scholar 

  • Sadler, M. &Berry, M. (1989) Topological link-vertex analysis of the growth of Purkinje cell dendritic trees in normal, reeler, and weaver mice.Journal of Comparative Neurology 289, 260–83.

    Google Scholar 

  • Sidman, R. L. (1968) Development of interneuronal connections in brains of mutant mice. InPhysiological and biochemical aspects of nervous integration (edited byCarlson, F. D.) pp. 163–93. New Jersey: Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Sidman, R. L. &Green, M. C. (1970) “Nervous”, a new mutant mouse with cerebellar disease. InLes mutants pathologiques chez l'animal (edited bySabourdy, M.) pp. 69–79. Paris: Edition du CNRS.

    Google Scholar 

  • Sotelo, C. (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse.Brain Research 94, 19–44.

    Google Scholar 

  • Sotelo, C. (1978) Purkinje cell ontogeny: formation and maintenance of spines.Progress in Brain Research 48, 148–68.

    Google Scholar 

  • Sotelo, C. (1980) Mutant mice and the formation of the cerebellar circuitry.Trends in Neurosciences 20, 33–5.

    Google Scholar 

  • Sotelo, C. (1990a) Axonal abnormalities in cerebellar Purkinje cells of the “hyperspiny Purkinje cell” mutant mouse.Journal of Neurocytology 19, 737–55.

    Google Scholar 

  • Sotelo, C. (1990b) Cerebellar synaptogenesis: what we can learn from mutant mice.Journal of Experimental Biology 153, 225–49.

    Google Scholar 

  • Sotelo, C. &Changeux, J. -P. (1974) Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer mutant mice.Brain Research 67, 519–26.

    Google Scholar 

  • Sotelo, C. &Triller, A. (1979) Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: a model to study presynaptic stabilization.Brain Research 175, 11–36.

    Google Scholar 

  • Spencer, R., Charman, M., Emtage, J. S. &Lawson, D. E. M. (1976) Production and properties of vitamin D-induced mRNA for chick calcium-binding protein.European Journal of Biochemistry 71, 399–409.

    Google Scholar 

  • Sternberger, L. A., Hardy, P. H. Jr, Cuculis, J. J. &Meyer, H. G. (1970) The unlabelled antibody method of immunohistochemistry. Preparation and properties of soluble antigen complex and its use in identification of spirochetes.Journal of Histochemistry and Cytochemistry 18, 315–33.

    Google Scholar 

  • Swisher, D. A. &Wilson, D. B. (1977) Cerebellar histogenesis in the Lurcher (Lc) mutant mouse.Journal of Comparative Neurology 173, 205–18.

    Google Scholar 

  • Theodosis, D. T., Paut, L. &Tappaz, M. L. (1986) Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus.Neuroscience 19, 207–22.

    Google Scholar 

  • Vogel, M. W. &Herrup, K. (1989) Numerical matching in the mammalian CNS: lack of a competitive advantage of early over late-generated cerebellar granule cells.Journal of Comparative Neurology 283, 118–28.

    Google Scholar 

  • Wassef, M., Zanetta, J. P., Brehier, A. &Sotelo, C. (1985) Transient biochemical compartmentalization of Purkinje cells during early cerebellar development.Developmental Biology 111, 129–37.

    Google Scholar 

  • Wassef, M., Sotelo, C., Cholley, B., Brehier, A. &Thomasset, M. (1987) Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells.Developmental Biology 124, 379–89.

    Google Scholar 

  • Wetts, R. &Herrup, K. (1982a) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. I. Qualitative studies.Journal of Embryology and Experimental Morphology 68, 87–98.

    Google Scholar 

  • Wetts, R. &Herrup, K. (1982b) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death.Brain Research 250, 358–62.

    Google Scholar 

  • Wetts, R. &Herrup, K. (1983) Direct correlation between Purkinje and granule cell number in the cerebella of Lurcher chimeras and wild-type mice.Developmental Brain Research 10, 41–7.

    Google Scholar 

  • Woodward, D. J., Hoffer, B. J., Siggins, G. R. &Bloom, F. E. (1971) The ontogenic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells.Brain Research 34, 73–97.

    Google Scholar 

  • Wuenschell, C. W., Messer, A. &Tobin, A. J. (1990) Lurcher Purkinje cells express glutamic acid decarboxylase and calbindin mRNAs.Journal of Neuroscience Research 27, 65–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumesnil-Bousez, N., Sotelo, C. Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21, 506–529 (1992). https://doi.org/10.1007/BF01186954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186954

Keywords

Navigation