Skip to main content
Log in

Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: an immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording

  • Published:
Journal of Neurocytology

Summary

Low-density primary cultures of neocortical neurons were utilized to examine: (i) early interactions of growing neurites with morphological characteristics of axons with other neuronal elements, and (ii) the distribution of presynaptic axonal varicosities closely apposed to MAP-2 immunoreactive, putatively postsynaptic, dendrites. At the light microscopical level axonal varicosites, presumably presynaptic terminals, were identified using immunocytochemistry incorporating antibodies specific for the synaptic vesicle antigens synaptophysin and synapsin. The presence of synaptophysin- and synapsin-immunoreactive swellings along axonal processes was first detected at 5 days post-plating and was also apparent in axons growing in isolation. At 5–7 daysin vitro, immunolabelled axonal varicosities in close apposition to putative postsynaptic dendrites (MAP-2 immunoreactive) dendrites were detected. Electrophysiologically active synaptic contacts can also readily be detected at this stage. After 3 weeksin vitro presynaptic contacts do appear to be distributed heterogeneously along postsynaptic dendrites of many neurons in culture. As the culture matures a higher number of presynaptic profiles can be seen along dendrites, with a centrifugal distribution, e.g. a higher density of presynaptic axonal terminals in close apposition to more distal regions of larger dendrites, putatively considered to be apical dendrites of pyramidal-like neurons. In our cultures, the overall increase in the density and the pattern of distribution of presynaptic axon terminals immunoreactive for synaptic vesicle antigens closely apposed to putative post-synaptic structures mimics the general postnatal increase of synaptic density in the neocortexin vivo. Thus, low density primary cultures of neocortical neurons offer a valuable system to explore and manipulate (i) the molecular and cellular basis of neocortical synaptogenesis, and (ii) the pharmacology of neocortical synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K. &Bloom, F. E. (1967) The formation of synaptic junctions in developing rat brain.Brain Research 6, 716–27.

    PubMed  Google Scholar 

  • Bain, D., Wilkinson, G. W. G., Preston, C. M., Castro, M. G. &Lowenstein, P. R. (1994) Adenovirus vectors to transfer genes into neurons: implications for gene therapy of neurological disorders.Gene Therapy 1, S68.

    PubMed  Google Scholar 

  • Baird, D. H., Hatten, M. E. &Mason, C. A. (1992) Cerebellar target neurons provide a stop signal for afferent neurite extensionin vitro.Journal of Neuroscience 12, 619–34.

    PubMed  Google Scholar 

  • Bahr, S. &Wolff, J. R. (1985) Postnatal development of axosomatic synapses in the rat visual cortex: morphogenesis and quantitative evaluation.Journal of Comparative Neurology 233, 405–20.

    PubMed  Google Scholar 

  • Benson, D. L., Watkins, F. H., Steward, O. &Banker, G. (1994) Characterization of GABAergic neurons in hippocampal cell cultures.Journal of Neurocytology 23, 279–95.

    PubMed  Google Scholar 

  • Binder, L. I., Frankfurter, A. &Rebhun, L. I. (1985) The distribution of tau in the mammalian central nervous system.Journal of Cell Biology 101, 1371–8.

    PubMed  Google Scholar 

  • Blue, M. E. &Parnavelas, J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis.Journal of Neurocytology 12, 697–712.

    PubMed  Google Scholar 

  • Caceres, A., Payne, M. R., Binder, L. I. &Steward, O. (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP-2 in dendritic spines.Proceedings of the National Academy of Sciences (USA) 80, 1738–42.

    Google Scholar 

  • Caceres, A., Banker, G. A. &Binder, L. (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture.Journal of Neuroscience 6, 714–22.

    PubMed  Google Scholar 

  • Castro, M. G., Spruce, B. A., Savva, D. &Lowry, P. J. (1990) Expression of biologically active human preprocorticotropin releasing hormone inE. coli: characterization and purification.International Journal of Biochemistry 22, 1341–9.

    PubMed  Google Scholar 

  • Cooper, M. W. &Smith, S. J. (1992) A real time analysis of growth cone target-cell interactions during the formation of stable contacts between hippocampal neurons in culture.Journal of Neurobiology 23, 814–28.

    PubMed  Google Scholar 

  • Craig, A. M. &Banker, G. (1994) Neuronal polarity.Annual Review of Neuroscience 17, 267–310.

    PubMed  Google Scholar 

  • Craig, A. M., Blackstone, C. D., Huganir, R. L. &Banker, G. (1993) The distribution of glutamate receptors in cultures rat hippocampal neurons: post-synaptic clustering of AMPA-selective subunits.Neuron 10, 1055–68.

    PubMed  Google Scholar 

  • Dotti, C. G. &Banker, G. A. (1991) Intracellular organization of hippocampal neurons during the development of neuronal polarity. InNerve Cell Biology, Journal of Cell Science, Suppl. 15 (edited byBray, D., Holder, N., Keynes, R., Lumsden, A. &Perry, H.) pp 75–84. Cambridge: The Company of Biologists Ltd.

    Google Scholar 

  • Dotti, C. G., Banker, G. A. &Binder, L. I. (1987) The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the ratin situ and in cell culture.Neuroscience 23, 121–30.

    PubMed  Google Scholar 

  • Dotti, C. G., Sullivan, C. A. &Banker, G. A. (1988) The establishment of polarity by hippocampal neurons in culture.Journal of Neuroscience 8, 1454–68.

    PubMed  Google Scholar 

  • Douglas, R. J. &Martin, K. A. C. (1990) Neocortex. InThe Synaptic Organization of the Brain (edited byShepherd, G. M.) pp 389–438. New York: Oxford University Press.

    Google Scholar 

  • Drubin, D. G. &Kirschner, M. W. (1986) Tau protein function in living cells.Journal of Cell Biology 103, 2739–46.

    Google Scholar 

  • Fischer, I., Kosik, K. S. &Sapirstein, V. S. (1987) Heterogeneity of microtubule associated protein (MAP-2) in vertebrate brains.Brain Research 436, 39–48.

    PubMed  Google Scholar 

  • Fletcher, T., Cameron, P., De Camilli, P. &Banker, G. (1991) The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture.Journal of Neuroscience 11, 1617–26.

    PubMed  Google Scholar 

  • Gallo, J. M., Hanger, D. P., Twist, E. C., Kosik, K. S. &Anderton, B. H. (1992) Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.Biochemical Journal 286, 399–404.

    PubMed  Google Scholar 

  • Geller, A. I., During, M. J. &Neve, R. L. (1991) Molecular analysis of neuronal physiology by gene transfer into neurons with herpes simplex virus vectors.Trends In Neurosciences 14, 428–32.

    PubMed  Google Scholar 

  • Goedert, M., Spillantini, M. G., Cairns, N. J. &Crowther, R. A. (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.Neuron 8, 159–68.

    PubMed  Google Scholar 

  • Goslin, K. &Banker, G. (1989) Experimental observations on the development of polarity by hippocampal neurons in culture.Journal of Cell Biology 108, 1507–16.

    PubMed  Google Scholar 

  • Goslin, K. &Banker, G. (1991) Rat hippocampal neurons in low-density culture. InCulturing Nerve Cells (edited byBanker, G. &Goslin, K.) pp 251–81. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Jahn, R., Schiebler, W., Ouimet, C. &Greengard, P. (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles.Proceedings of the National Academy of Sciences (USA) 82, 4137–41.

    Google Scholar 

  • Kalil, K. &Norris, C. R. (1992) Pathfinding by growth cones in tracts and targets of the mammalian cerebral cortex. InThe Nerve Growth Cone (edited byLetourneau, P. C., Kater, S. B. &Macagno, E. R.) pp 425–46. New York: Raven Press.

    Google Scholar 

  • Kim, G. J., Shatz, C. J. &McConnell, S. K. (1991) Morphology of pioneer and follower growth cones in the developing cerebral cortex.Journal of Neurobiology 22, 629–42.

    PubMed  Google Scholar 

  • Kosik, K. S. &Finch, E. A. (1987) MAP-2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum.Journal of Neuroscience 7, 3142–53.

    PubMed  Google Scholar 

  • Le Gal La Salle, G., Robert, J. J., Berard, S., Ridoux, V., Stratford-Perricaudet, L. D., Perricaudet, M. &Mallet, J. (1993) An adenovirus vector for gene transfer into neurons and glia in the brain.Science 259, 988–90.

    PubMed  Google Scholar 

  • Litman, P., Barg, J., Rindzoonski, L. &Ginzburg, I. (1993) Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity.Neuron 10, 627–38.

    PubMed  Google Scholar 

  • Lowenstein, P. R. &Somogyi, P. (1991) Synaptic organization of cortico-cortical connections from the primary visual cortex to the posteromedial lateral suprasylvian visual area in the cat.Journal of Comparative Neurology 310, 253–66.

    PubMed  Google Scholar 

  • Lowenstein, P. R., Fournel, S., Bain, D., Tomasec, P., Clissold, P., Castro, M. G. &Epstein, A. L. (1994a) Herpes simplex virus 1 (HSV1) helper co-infection affects the distribution of an amplicon encoded protein in glia.NeuroReport 5, 1625–30.

    PubMed  Google Scholar 

  • Lowenstein, P. R., Morrison, E. E., Bain, D., Hodge, P., Preston, C. M., Clissold, P. M., Stow, N. D., McKee, T. A. &Castro, M. G. (1994b) Use of recombinant vectors derived from herpes simplex virus 1 mutanttsK for short-term expression of transgenes encoding cytoplasmic and membrane anchored proteins in postmitotic polarized cortical neurons and glial cellsin vitro.Neuroscience 60, 1059–77.

    PubMed  Google Scholar 

  • Lowenstein, P. R., Morrison, E. E., Bain, D., Shering, A. F., Banting, G., Douglas, P. &Castro, M. G. (1994c) Polarized distribution of thetrans-Golgi network marker TGN38 during thein vitro development of neocortical neurons: effects of nocodazole and brefeldin A.European Journal of Neuroscience 6, 1453–65.

    PubMed  Google Scholar 

  • Mandell, J. W., Townes-Anderson, E., Czernik, A. J., Cameron, R., Greengard, P. &De Camilli, P. (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses.Neuron 5, 19–33.

    PubMed  Google Scholar 

  • Mason, C. A. &Godement, P. (1992) Growth cone form reflects interactions in visual pathways and cerebellar targets. InThe Nerve Growth Cone (edited byLetour-Neau, P. C., Kater, S. B. &Macagno, E. R.) pp 405–23. New York: Raven Press.

    Google Scholar 

  • Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. &De Camilli, P. (1992) Exo-endocytic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons.Journal of Cell Biology 117, 849–61.

    PubMed  Google Scholar 

  • Matus, A. (1991) Microtubule-associated proteins and neuronal morphogenesis. InNerve Cell Biology, Journal of Cell Science, Suppl. 15 (edited byBray, D., Holder, N., Keynes, R., Lumsden, A. &Perry, H.) pp 75–84. Cambridge: The Company of Biologists Ltd.

    Google Scholar 

  • Miller, M. W. (1981) Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons.Journal of Neurocytology 10, 859–78.

    PubMed  Google Scholar 

  • Miller, M. W. (1986) Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogenesis of local circuit neurons.Developmental Brain Research 25, 271–85.

    Google Scholar 

  • Miller, M. W. (1988) Development of projection and local circuit neurons in neocortex. InCerebral Cortex, Vol. 7 (edited byPeters, A. &Jones, E. G.) pp 133–75. New York and London: Plenum Press.

    Google Scholar 

  • O'Connor, T. P., Duerr, J. S. &Bentley, D. (1990) Pioneer growth cone steering decisions mediated by single filopodial contactsin situ.Journal of Neuroscience 10, 3935–46.

    PubMed  Google Scholar 

  • Ramakers, G. J. A. (1991) Minimal requirements for long-term serum-free culturing of electrically active rat cerebral cortex neurons in a monolayer.Society of Neuroscience Abstracts 17, 1506.

    Google Scholar 

  • Ramakers, G. J. A. &Boer, G. J. (1990) Chronic supression of bioelectric activity and cell survival in primary cultures of rat cerebral cortex: biochemical observations.European Journal of Neuroscience 3, 154–61.

    Google Scholar 

  • Ramakers, G. J. A., Raadsheer, F. C., Corner, M. A., Ramaekers, F. C. S. &Van Leeuwen, F. W. (1990) Development of neurons and glial cells in cerebral cortex, cultured in the presence or absence of bioelectric activity: morphological observations.European Journal of Neuroscience 3, 140–53.

    Google Scholar 

  • Reginer-Vigouroux, A., Tooze, S. A. &Huttner, W. B. (1991) Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane.EMBO Journal 10, 3589–601.

    PubMed  Google Scholar 

  • Shering, A. F. &Lowenstein, P. R. (1994) Neocortex provides direct synaptic input to interstitial neurons of the intermediate zone of kittens and white matter of cats: a light and electron microscopic study.Journal of Comparative Neurology 347, 433–43.

    PubMed  Google Scholar 

  • White, E. L. (1989)Cortical Circuits, synaptic Organization of the Cerebral Cortex. Structure, Function, and Theory. Boston: Birkhauser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowenstein, P.R., Shering, A.F., Morrison, E. et al. Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: an immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording. J Neurocytol 24, 301–317 (1995). https://doi.org/10.1007/BF01186542

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186542

Keywords

Navigation