Skip to main content
Log in

Sympathoadrenal progenitors in embryonic chick sympathetic ganglia show distinct responses to glucocorticoid hormones

  • Published:
Journal of Neurocytology

Summary

The sympathoadrenal cell lineage originates from the neural crest and comprises the neurons of sympathetic ganglia, adrenal and extra-adrenal chromaffin cells, and the so-called small intensely fluorescent cells.In vitro studies using mammalian immature chromaffin cells, adrenal or sympathetic ganglionic progenitors, or ganglionic small intensely fluorescent cells, have suggested that glucocorticoid hormones are essential for inhibiting neuronal differentiation of sympathoadrenal progenitors and promoting the chromaffin cell phenotype. In avian systems, however, the distinct cellular phenotypes in this lineage and the molecular cues underlying their differentiation have not been fully explored. In the chick embryo, early sympathetic ganglion anlagen are populated by granule-containing cells that morphologically resemble small intensely fluorescent cells and chromaffin cell progenitors. These cells subsequently disappear from the ganglia, by death and by transition into fully differentiated sympathetic neurons, as indicated by the appearance of cells that are ultrastructurally intermediate between granule-containing cells and fully differentiated neurons (granule-containing cells in transition). In the present study, we show that treatment of cultured sympathetic cells dissociated from embryonic day (E) 7, 9, or 11 lumbar sympathetic ganglia with the glucocorticoid hormones hydrocortisone or corticosterone has neither an inhibitory nor an inductive effect on phenotypes of granule-containing cells or granule-containing cells in transition. In cell cultures of E15 ganglia, however, glucocorticoid treatment induces a granule-containing cell resembling the granule-containing phenotype. These results suggest that the early granule-containing cells and granule-containing cells in transition in chick sympathetic ganglia are not the counterparts of glucocorticoid-responsive mammalian small intensely fluorescent or chromaffin progenitor cells, despite their morphological similarity. However, E15 sympathetic ganglia apparently contain a glucocorticoid-responsive progenitor population that can differentiate into chromaffin-like cells. These progenitors seem to require a systemic or intraganglionic developmental signal or undergo a temporal switch that renders them susceptible to glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accordi, F., Rossi, A., Manelli, H. &Toschi, G. (1975) Phenylethanolamine-N-methyltransferase activity of chick embryo adrenals, cultivatedin vitro, and the action of corticoids and ACTH.Acta Embryologica Experimentalis 3, 243–8.

    Google Scholar 

  • Anderson, D. J. (1988) Cell fate and gene expression in the developing neural crest. InNeural Development and Regeneration. Cellular and Molecular Aspects (edited byGorio, A., Perez-Polo, J. R. &De Vellis, J.) pp. 187–98. Nato Asi Series H 22. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Anderson, D. J. (1993a) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage.Annual Review of Neuroscience 16, 129–58.

    PubMed  Google Scholar 

  • Anderson, D. J. (1993b) Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor.Journal of Neurobiology 24, 185–98.

    PubMed  Google Scholar 

  • Anderson, D. J. &Axel, R. (1986) A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids.Cell 47, 1079–90.

    PubMed  Google Scholar 

  • Anderson, D. J. &Michelson, A. S. (1989) Role of glucocorticoids in chromaffin-neuron developmental decision.International Journal of Developmental Neuroscience 7, 475–87.

    PubMed  Google Scholar 

  • Anderson, D. J., Carnahan, J. F., Michelson, A. &Patterson, P. H. (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cellsin vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage.Journal of Neuroscience 11, 3507–19.

    PubMed  Google Scholar 

  • Beaudry, C., Bellabarba, D. &Leroux, J.-G. (1983) Corticosteroid receptors in the kidney of the chick embryo. I. Nature and properties of corticosterone receptor.General and Comparative Endocrinology 50, 292–304.

    PubMed  Google Scholar 

  • Bellabarba, D., Beaudry, C. &Lehoux, J. -G. (1983) Corticosteroid receptors in the kidney of the chick embryo. II. Ontogeny of corticosterone receptor and cellular development.General and Comparative Endocrinology 50, 305–12.

    PubMed  Google Scholar 

  • Bottenstein, J. E., Skaper, S. D., Varon, S. &Sato, G. H. (1980) Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium.Experimental Cell Research 125, 183–90.

    PubMed  Google Scholar 

  • Carnahan, J. F. &Patterson, P. H. (1988) Markers for the early sympathoadrenal lineage.Society for Neuroscience Abstracts 14, 319.

    Google Scholar 

  • Carnahan, J. F. &Patterson, P. H. (1991a) The generation of monoclonal antibodies that bind prefer-entially to adrenal chromaffin cells and the cells of embryonic sympathetic ganglia.Journal of Neuroscience 11, 3493–506.

    PubMed  Google Scholar 

  • Carnahan, J. F. &Patterson, P. H. (1991b) Isolation of the progenitor cells of the sympathoadrenal lineage from embryonic sympathetic ganglia with the SA monoclonal antibodies.Journal of Neuroscience 11, 3520–30.

    PubMed  Google Scholar 

  • Dolezalova, H., Giacobini, E., Giacobini, G., Rossi, A. &Toschi, G. (1974) Developmental variations of choline acetyl-transferase, dopamine-β-hydroxylase, and monoaminooxidase in chicken embryo and chicken sympathetic ganglia.Brain Research 73, 309–20.

    PubMed  Google Scholar 

  • Doupe, A. J., Landis, S. C. &Patterson, P. H. (1985a) Environmental influences in the development of neural crest derivatives.Journal of Neuroscience 5, 2119–42.

    PubMed  Google Scholar 

  • Doupe, A. J., Patterson, P. H. &Landis, S. C. (1985b) Small intensely fluorescent cells in culture: role of glucocorticoids and growth factors in their development and interconversions with other neural crest derivatives.Journal of Neuroscience 5, 2143–60.

    PubMed  Google Scholar 

  • Eränkö, O., ed. (1976)SIF cells. structure and Function of Small, Intensely Fluorescent Cells. Fogarty International Center Proceedings, No. 30. Washington: DHWE Publ.-No. (NIH) 76-942.

  • Ignaro, L. J. &Shideman, F. E. (1968) Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick.Journal of Pharmacology and Experimental Therapeutics 159, 38–48.

    PubMed  Google Scholar 

  • Hall, A. K. &Landis, S. C. (1991) Principal Neurons and small intensely fluorescent (small intensely fluorescent) cells in the rat superior cervical ganglion have distinct developmental histories.Journal of Neuroscience 11, 472–84.

    PubMed  Google Scholar 

  • Hamburger, V. &Hamilton, H. L. (1951) A series of normal stages in the development of the chick embryo.Journal of Morphology 88, 49–92.

    Google Scholar 

  • Hawrott, E. &Patterson, P. H. (1979) Long-term culture of dissociated sympathetic neurons. InCell Culture (edited byJacoby, W. B. &Pastan, I. H.) pp. 574–84. Methods in Enzymology, Volume 58. New York, San Francisco, London: Academic Press.

    Google Scholar 

  • Hervonen, H. (1975) Histochemical and electron microscopical study on sympathetic ganglia of the chick embryo in culture. Academic Dissertation, Acta Institutionis Anatomicae Universitatis Helsinkiensis, Helsinki.

    Google Scholar 

  • Le Douarin, N. M. (1980) The ontogeny of the neural crest in avian embryo chimaeras.Nature 286, 663–9.

    PubMed  Google Scholar 

  • Le Douarin, N. M. (1986) Cell lineage segregation during peripheral nervous system ontogeny.Science 231, 1515–22.

    PubMed  Google Scholar 

  • Lietzke, R. &Unsicker, K. (1983) Tetanus toxin binding to different morphological phenotypes of cultured rat and bovine adrenal medullary cells.Neuroscience Letters 38, 233–8.

    PubMed  Google Scholar 

  • Lu, K. -S., Lever, J. D., Santer, R. M. &Presley, R. (1976) Small granulated cell types in rat superior cervical and coeliac-mesenteric ganglia.Cell and Tissue Research 172, 331–43.

    PubMed  Google Scholar 

  • Luckenbill-Edds, L. &Van Horn, C. (1980) Development of chick paravertebral sympathetic ganglia. I. Fine structure and correlative histofluorescence of catecholaminergic cells.Journal of Comparative Neurology 191, 65–76.

    PubMed  Google Scholar 

  • Oikarinen, A. (1987) Developmental changes in the levels of glucocorticoid receptors in chick embryo tissues.Medical Biology 65, 199–202.

    PubMed  Google Scholar 

  • Päivärinta, H. (1984) Fine structure of small, granule containing cells in the superior cervical ganglion of hydrocortisone-treated early postnatal and adult rats.Cell and Tissue Research 238, 297–305.

    PubMed  Google Scholar 

  • Ross, S., Fischer, A. &Unsicker, K. (1990) Differentiation of chick sympathetic neuronsin vivo: ultrastructure, and quantitative determinations of catecholamines and somatostatin.Cell and Tissue Research 260, 147–59.

    PubMed  Google Scholar 

  • Seidl, K. &Unsicker, K. (1989a) Survival and neurite growth of sympathoadrenal (chromaffin) precursor cellsin vitro.International Journal of Developmental Neuroscience 7, 465–73.

    PubMed  Google Scholar 

  • Seidl, K. &Unsicker, K. (1989b) The determination of the adrenal medullary cell fate during embryogenesis.Developmental Biology 136, 481–90.

    PubMed  Google Scholar 

  • Smith, J. &Fauquet, M. (1984) Glucocorticoids stimulate adrenergic differentiation in cultures of migrating and premigratory neural crest.Journal of Neuroscience 4, 2160–72.

    PubMed  Google Scholar 

  • Stemple, D. L., Mahanthappa, N. K. &Anderson, D. J. (1988) Basic FGF induces neuronal differentiation, cell division and NGF dependence in chromaffin cells: a sequence of events in sympathetic development.Neuron 1, 517–25.

    PubMed  Google Scholar 

  • Teitelman, G., Skaper, S., Baker, H., Park, D. H., Joh, T. H. &Adler, R. (1984) Expression of phenylethanolamine-n-methyltransferase in sympathetic neurons and extraadrenal chromaffin tissue of chick embryosin vivo andin vitro.Developmental Brain Research 13, 283–91.

    Google Scholar 

  • Unsicker, K., Krisch, B., Otten, U. &Thoenen, H. (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids.Proceedings of the National Academy of Sciences (USA) 75, 3498–502.

    Google Scholar 

  • Unsicker, K., Skaper, S. D. &Varon, S. (1985a) Neurotrophic and neurite promoting factors. Effects on early postnatal chromaffin cells from rat adrenal medulla.Developmental Brain Research 17, 117–29.

    Google Scholar 

  • Unsicker, K., Skaper, S. D. &Varon, S. (1985b) Developmental changes in the responses of rat chromaffin cells to neuronotrophic and neurite-promoting factors.Developmental Biology 111, 425–33.

    PubMed  Google Scholar 

  • Unsicker, K., Skaper, S. D. &Varon, S. (1985c) Phenotypical changes of embryonic chick adrenal medullary cellsin vitro induced by nerve growth factor and ciliary neuronotrophic factor.Neuroscience Letters 60, 127–32.

    PubMed  Google Scholar 

  • Unsicker, K., Millar, T. J., Müller, T. H. &Hofmann, H. D. (1985d) Embryonic rat adrenal glands in organ culture: effects of dexamethasone, nerve growth factor, and its antibodies on pheochromoblast differentiation.Cell and Tissue Research 241, 207–17.

    PubMed  Google Scholar 

  • Wassermann, G. F. &Bernard, E. A. (1971) The influence of corticoids on the phenylethanolamine-n-methyltransferase activity in adrenal glands ofGallus domesticus.General and Comparative Endocrinology 17, 83–93.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, S., Fischer, A. & Unsicker, K. Sympathoadrenal progenitors in embryonic chick sympathetic ganglia show distinct responses to glucocorticoid hormones. J Neurocytol 24, 247–256 (1995). https://doi.org/10.1007/BF01186537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186537

Keywords

Navigation