Skip to main content
Log in

Reduced crack growth ductility due to asymmetric configurations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fully plastic structures are desirable to help detect impending failure. For stability, the displacement per unit drop in load due to any crack growth must be less than the compliance of the surrounding structure. The corresponding crack growth ductility is less with asymmetric configurations, than with the symmetric ones usually studied. Examples are given of face-grooved plates with unequal flank angles, staggered cracks, and single cracks near welds in joints under tension or bending. Further examples are the tendency of cracks on a microscopic scale to become rough, to zig-zag, or even to spiral (in round bars).

The maximum triaxiality can occur on a single slip line between staggered cracks from opposing faces of a plate, according to a slip line analysis. Except at the lowest triaxiality, 1018CF steel with a 3 mm ligament became unstable even when the compliances of the surroundings totalled only 6 × 10−6 mm/N. For higher triaxialities the limit load was not reached and the ensuing unstable fractures usually turned to cleavage.

In plates, the slow,stahle, plastic extension of slant-mode through-cracks sometimes abruptly changed to cleavage fracture, even at 10°Cabove both the 0.51 mm lateral expansion and Charpy 34.1 J (25 ft-Ib) transition temperatures, either sufficient to meet the ASME Code. In structures, this means that fragmentationcan intervene even during slow, “low-triaxiality”, stable crack growth in material meeting Code requirements.

Résumé

Des constructions à caractéristiques totalement plastiques sont souhaitables pour permettre la détection de risques de rupture. Pour conserver la stabilité, il faut que le déplacement par unité de chute de la charge associée à toute croissance d'une fissure soit inférieur à la compliance avoisinante de la construction. La ductilité vis-à-vis de la croissance de la fissure est plus faible en configurations asymétriques que dans les configurations symétriques généralement utilisées dans les études.

Des exemples de plaques comportant des entailles de surface à angles de bordes inégaux, de fissures en quinconce et de fissures simples au voisinage de joints soudés soumis à traction ou à flexion sont fournis. D'autres exemples montrent à l'échelle microscopique la tendance pour les fissures à devenir grossières, à zigzaguer ou même à se spiraler (dans des barreaux ronds).

Conformént à une analyse des lignes de glissements, a la triaxialité maximum peut survenir sur une ligne simple de glissement entre des fissures en quinconce partant de la face opposée d'une plaque. A l'exception du cas de triaxialité la plus faible, l'acier 1018 CF avec un ligament de 3 mm devient instable même lorsque les compliances de la structure avoisinante ne totalisent ue 6.10−6 mm/N. Pour des triaxialités plus importantes, la charge limite n'a pas été atteinte, et les ruptures instables qui résultent se muent généralement en clivages.

Dans les tôles, on a constaté que l'extension lente, stable et plastique de fissures traversantes obliques peut soudain se muer en rupture fragile, même à 10°C au dessus de la température correspondant à une expansion latérale de 0.51 mm, ou au-dessus de la température de transition Charpy V correspondant à 25 ft-lb, ces deux critères étant pourtant conformes au code ASME.

Dans les constructions, ceci signifie qu'une fragmentation peut survenir même au cours d'une croissance lente, stable et “en faible triaxialité” d'une fissure dans un matériau qui satisfait aux prescriptions du code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. McClintock and A.S. Argon (eds.),Mechanical Behavior of Materials, Addison-Wesley, Reading (1966) 378.

    Google Scholar 

  2. F.A. McClintock, inFracture, Vol. 3, H. Liebowitz (ed.), Academic Press, New York (1971) 155–162.

    Google Scholar 

  3. A.P. Green,Journal of the Mechanics and Physics of Solids 2 (1954) 197–211.

    Google Scholar 

  4. F.A. McClintock,Welding Journal Research Supplement 26 (1961) 202–208.

    Google Scholar 

  5. G.A. Kardomateas and F.A. McClintock,International Journal of Fracture 35 (1987) 103–124.

    Google Scholar 

  6. J.W. Carson, “A Study of Plane Strain Ductile Fracture”, Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (1970). See also [7].

    Google Scholar 

  7. F.A. McClintock and J.L. Bassani, inThree-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser (ed.), North Holland (1981) 123–145.

  8. J. Miklowitz,Journal of Applied Mechanics 17 (1950) 159–168.

    Google Scholar 

  9. C.F. Tipper,Metallurgia 39 (1949) 133–137.

    Google Scholar 

  10. J.I. Bluhm and R.J. Morrissey, inProceedings of the First International Conference on Fracture, Sendai, Japanese Society for Strength and Fracture of Materials, Vol. 3 (1966) 1739–1780.

  11. J.E. Neimark,Journal of Applied Mechanics 35 (1968) 111–116.

    Google Scholar 

  12. F.A. McClintock, inPhysics of Strength and Plasticity, A.S. Argon (ed.), MIT Press, Cambridge (1969) 307–326.

    Google Scholar 

  13. J.R. Rice and M.A. Johnson, inInelastic Behavior of Solids, M.F. Kanninen et al. (eds.), McGraw-Hill (1970) 641–672.

  14. C.A. Berg inInelastic Behavior of Solids, M.F. Kanninen et al. (eds.), McGraw-Hill (1970) 171–210.

  15. G.R. Yoder,Metallurgical Transactions 3 (1972) 1851–1859.

    Google Scholar 

  16. C.D. Beachem and G.R. Yoder,Metallurgical Transactions 4 (1973) 1145–1153.

    Google Scholar 

  17. C.G. Chipperfield and J.F. Knott,Metals Technology 2 (1975) 45–51.

    Google Scholar 

  18. J.A. Van Den Avyle, “Correlation of Fractography, Microstructure, and Fracture Toughness Behavior of High Strength Alloys”, PhD thesis, Department of Metallurgy and Materials Science, Massachusetts Institute of Technology, Cambridge (1975).

    Google Scholar 

  19. J.W. Hancock and M.J. Cowling,Metal Science 14 (1980) 293–304.

    Google Scholar 

  20. H.C. Rogers,Transactions of the Metallurgical Society AIME 218 (1960) 498–506.

    Google Scholar 

  21. F.A. McClintock and S.J. Wineman,International Journal of Fracture 33 (1987) 285–295.

    Google Scholar 

  22. T. Kobayashi, G.R. Irwin, and X.J. Zhang, inFractography of Ceramic and Metal Failures, ASTM STP 827 (1984) 234–251.

    Google Scholar 

  23. D.A. Shockey and T. Kobayashi,Metallurgical Transactions 18A (1987) 1941–1949.

    Google Scholar 

  24. V. Tvergaard and A. Needleman,Acta Metallurgica 32 (1984) 157–169.

    Google Scholar 

  25. A. Needleman and V. Tvergaard,Journal of the Mechanics and Physics of Solids 35 (1987) 151–183.

    Google Scholar 

  26. N. Aravas and R.M. McMeeking,Journal of the Mechanics and Physics of Solids 33 (1985) 25–49.

    Google Scholar 

  27. N. Aravas and R.M. McMeeking,International Journal of Fracture 29 (1985) 21–38.

    Google Scholar 

  28. C.L. Hom and R.M. McMeeking, “Three-Dimensional Void Growth Before a Blunting Crack Tip”, submitted toJournal of the Mechanics and Physics of Solids (1988).

  29. D.P. Clausing,Transactions of the American Society for Metals 60 (1967) 504–515.

    Google Scholar 

  30. F.J. Wu, “Loss of Fully-Plastic Crack Growth Ductility from Asymmetry in Plane Strain Bending”, M.S. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (1987).

    Google Scholar 

  31. P. Ponte Castaneda,Journal of the Mechanics and Physics of Solids 35 (1987) 227–268.

    Google Scholar 

  32. P. Ponte Castafieda,Journal of Applied Mechanics 54 (1987) 379–387.

    Google Scholar 

  33. G.A. Kardomateas, “Mixed Mode I and II Fully Plastic Crack Growth from Simulated Weld Defects”, PhD. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, (1985) Chapter 6.

    Google Scholar 

  34. G.A. Kardomateas and F.A. McClintock,International Journal of Fracture 40 (1989).

  35. F.A. McClintock, inFracture, Vol. 3, H. Liebowitz (ed), Academic Press (1971) 136–141.

  36. A.P. Green,Journal of the Mechanics and Physics of Solids 4 (1956) 259–268.

    Google Scholar 

  37. D.J.F. Ewing and R. Hill,Journal of the Mechanics and Physics of Solids 15 (1967) 115–124.

    Google Scholar 

  38. F.A. McClintock and M. Clerico,Journal of the Mechanics and Physics of Solids 28 (1980) 1–16.

    Google Scholar 

  39. R. Hill,The Mathematical Theory of Plasticity, Oxford University Press, Oxford (1985) 132–135.

    Google Scholar 

  40. F.A. McClintock, inFracture, Vol. 3, H. Liebowitz (ed.), Academic Press (1971) 67–68.

  41. J.D. Landes and T.R. Leax, inFracture Mechanics: Fifteenth Symposium, ASTM STP 833, R.J. Sanford (ed.), (1984) 436–448.

  42. J.D. Landes and D.E. McCabe, inElastic-Plastic Fracture: Second Symposium, Volume 2 – Fracture Resistance Curves and Engineering Applications, ASTM STP 803, C.F. Shih and J.F. Gudas (eds.), (1983) 723–733.

  43. V.T. Troshchenko, V.V. Pokrovsky, and A.V. Prokopenko, inFracture, Vol. 3, D.M.R. Taplin (ed.), University of Waterloo Press, Waterloo (1977) 683–686.

    Google Scholar 

  44. J.A. Joyce and V. Culafic,International Journal of Fracture 36 (1988) 89–100.

    Google Scholar 

  45. W.G. Reuter, “Comparison Between Experimental and Analytical (Including Empirical) Results of Crack Growth Initiation Studies on Surface Cracks”, inThird International Symposium on Non-linear Fracture Mechanics (1986), ASTM STP 995 to appear (1989).

  46. ASME Boiler and Pressure Vessel Code, Sec. III, Div. 1, Sub-section NB-2300 (1986) 15–18.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClintock, F.A. Reduced crack growth ductility due to asymmetric configurations. Int J Fract 42, 357–370 (1990). https://doi.org/10.1007/BF01185957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01185957

Keywords

Navigation