Skip to main content
Log in

Calcium channels in the cell membrane

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The development of the intracellular perfusion technique made isolated nerve cells an extremely convenient object for the detailed study of calcium channels, which allow the corresponding ions to enter the cell through the surface membrane during excitation. A wide range of investigations conducted in this object has shown that calcium channels, allowing the passage of bivalent cations in the order of preference Ba > Sr > Ca > Mg, bind these ions with the aid of a binding group located inside the channel. Other bivalent cations (Co, Ni, Mn, Cd), which bind too strongly with this group, become competitive channel blockers. In the absence of bivalent cations in the extracellular medium the calcium channels lose their selectivity and begin to transmit monovalent cations effectively; the reason for this transformation is detachment of the bound calcium ions from a special regulating group at the mouth of the calcium channels. Calcium channels can exist in two functional states: conducting and nonconducting. The transition between these states is accompanied by movement of charges inside the membrane (“gating currents”). The statistical kinetics of this transition, like the kinetics of gating currents, can be described by a modified Hodgkin-Huxley equation, with an activation variable raised to the power of 2. During long-term membrane depolarization the calcium channels pass into an inactivated state, which is connected with the recurrent blocking action of calcium ions, entering the cell, on the channnels. Meanwhile, for some types of calcium channels, potential-dependent activation analogous to that in sodium or potassium channels is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. E. Valeev, “Selectivity of calcium channels of the somatic membrane ofHelix pomatia neurons for calcium, strontium, and barium ions,” Neirofiziologiya,11, No. 4, 371 (1979).

    Google Scholar 

  2. N. S. Veselovskii and S. A. Fedulova, “Two types of calcium channels in the somatic membrane of rat spinal ganglionic neurons,” Dokl. Akad. Nauk SSSR,268, No. 3, 747 (1982).

    Google Scholar 

  3. P. A. Doroshenko, P. G. Kostyuk, and O. A. Kryshtal', “Action of calcium on the somatic membrane of molluscan giant neurons,” Neirofiziologiya,5, No. 6, 621 (1973).

    Google Scholar 

  4. P. A. Doroshenko, P. G. Kostyuk, and A. E. Martynuk, “Inactivation of calcium current in the somatic membrane of molluscan neurons,” Neirofiziologiya,14, No. 5, 525 (1982).

    Google Scholar 

  5. P. A. Doroshenko, P. G. Kostyuk, and A. Ya. Tsyndrenko, “Investigation of the reversal potential for the slow component of the inward current in the molluscan neuron membrane,” Neirofiziologiya,10, No. 2, 206 (1978).

    Google Scholar 

  6. P. A. Doroshenko, P. G. Kostyuk, and A. Ya. Tsyndrenko, “Separation of potassium and calcium channels in the somatic membrane of the nerve cell,” Neirofiziologiya,10, No. 6, 645 (1978).

    Google Scholar 

  7. P. A. Doroshenko and A. Ya. Tsyndrenko, “Action of intracellular calcium on the calcium inward current,” Neirofiziologiya,10, No. 2, 203 (1978).

    Google Scholar 

  8. P. G. Kostyuk and Ya. M. Shuba, “Investigation of selectivity of EDTA-modified calcium channels relative to monovalent cations,” Neirofiziologiya,14, No. 5, 491 (1982).

    Google Scholar 

  9. O. A. Kryshtal', “Modification of calcium channels in the nerve cell by means of EGTA,” Dokl. Akad. Nauk SSSR,238, No. 2, 482 (1978).

    Google Scholar 

  10. O. A. Kryshtal' and V. I. Pidoplichko, “Intracellular perfusion of snail giant neurons,” Neirofiziologiya,7, No. 3, 327 (1975).

    Google Scholar 

  11. O. A. Kryshtal' and V. I. Pidoplichko, “Displacement currents connected with activation of the gating mechanism of calcium channels in the nerve cell membrane,” Dokl. Akad. Nauk SSSR,231, No. 5, 1248 (1976).

    PubMed  Google Scholar 

  12. V. N. Ponomarev, É. V. Naruševičius, and N. K. Cěmeris, “Blocking action of Ni2+, Co2+, Mn2+, and Mg2+ ions on the inward current through the calcium channel ofLimnaea stagnalis neurons,”, Neirofiziologiya12, No. 2, 221 (1980).

    Google Scholar 

  13. D. J. Adams and P. W. Gage, “Gating currents associated with sodium and calcium currents inAplysia neurons,” Science,192, 783 (1976).

    PubMed  Google Scholar 

  14. D. J. Adams and P. W. Gage, “Ionic currents in response to membrane depolarization in an Aplysia neuron,” J. Physiol. (London),289, 115 (1979).

    Google Scholar 

  15. D. J. Adams and P. W. Gage, “Characteristics of sodium and calcium conductance changes, produced by membrane depolarization in an Aplysia neuron,” J. Physiol. (London),289, 143 (1979).

    Google Scholar 

  16. N. Akaike, K. S. Lee, and A. M. Brown, “The calcium current ofHelix neuron,” J. Gen. Physiol.,71, 509 (1978).

    PubMed  Google Scholar 

  17. W. Aimers and P. T. Palade, “Slow calcium and potassium currents across frog muscle membrane: measurements with a Vaseline gap technique,” J. Physiol. (London),312, 159 (1981).

    Google Scholar 

  18. F. M. Ashcroft and P. R. Stanfield, “Calcium inactivation in skeletal muscle fibres of the stick insect,Carausius morosus,” J. Physiol. (London),330, 349 (1982).

    Google Scholar 

  19. P. F. Baker, “The regulation in intracellular calcium,” in: Symposia of the Society for Experimental Biology, XXX. Calcium in Biological Systems. The University Press, Cambridge (1976), pp. 67–88.

    Google Scholar 

  20. P. F. Baker, H. Meves, and E. B. Ridgway, “Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons,” J. Physiol. (London),231, 511 (1973).

    Google Scholar 

  21. P. Brehm and R. Eckert, “Calcium entry leads to inactivation of calcium channel inParamecium,” Science,202, 1203 (1978).

    PubMed  Google Scholar 

  22. A. M. Brown, K. Morimoto, Y. Tsuda, and D. L. Wilson, “Calcium current-dependent and voltage-dependent inactivation of calcium channels inHelix aspersa,” J. Physiol. (London),320, 193 (1981).

    Google Scholar 

  23. L. Byerly and S. Hagiwta, “Calcium currents in internally perfused nerve cell bodies ofLimnaea stagnalis,” J. Physiol. (London),322, 503 (1982).

    Google Scholar 

  24. J. A. Connor, “Time course separation of two inward currents in molluscan neurons,” Brain Res.,119, 487 (1977).

    PubMed  Google Scholar 

  25. J. A. Connor, “Calcium current in molluscan neurons: measurement under conditions which maximize its visibility,” J. Physiol. (London),286, 41 (1979).

    Google Scholar 

  26. B. A. Curtis and C. L. Prosser, “Calcium and cat intestinal smooth muscle,” in: Excitation-Contraction Coupling in Smooth Muscle, Elsevier/North-Holland Biomedical Press, Amsterdam (1977), pp. 123–129.

    Google Scholar 

  27. R. Eckert and D. H. Lux, “A non-inactivating inward current recorded during small depolarizing voltage steps in snail pacemaker neurons,” Brain Res.,83, 486 (1975).

    PubMed  Google Scholar 

  28. E. M. Fenwick, A. Marty, and E. Neber, “Sodium and calcium channels in bovine chromaffin cells,” J. Physiol. (London),331, 599 (1982).

    Google Scholar 

  29. D. R. Ferry and H. Glossmann, “Evidence for multiple receptor sites within the putative calcium channel,” Naunyn-Schmiedeberg's Arch. Pharmacol.,320, 41 (1982).

    Google Scholar 

  30. M. C. Fishman and I. Spector, “Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells,” Proc. Natl. Acad. Sci. USA,78, 5245 (1981).

    PubMed  Google Scholar 

  31. A. Fox, “Voltage-dependent inactivation of a calcium channel,” Proc. Natl. Acad. Sci. USA,78, 953 (1981).

    PubMed  Google Scholar 

  32. D. Geduldig and R. Gruener, “Voltage clamp of theAplysia giant neuron: early sodium and calcium currents,” J. Physiol. (London),211, 217 (1970).

    Google Scholar 

  33. S. Hagiwara, “Ca spike,” Adv. Biophys.,4, 71 (1973).

    PubMed  Google Scholar 

  34. S. Hagiwara and K.-I. Naka, “The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++,” J. Gen. Physiol.,48, 141 (1964).

    PubMed  Google Scholar 

  35. S. Hagiwara and H. Ohmori, “Studies of calcium channels in rat clonal pituitary cells with path electrode voltage clamp,” J. Physiol. (London),331, 231 (1982).

    Google Scholar 

  36. S. Hagiwara and H. Ohmori, “Studies of single calcium channel currents in rat clonal pituitary cells,” J. Physiol. (London),336, 649 (1983).

    Google Scholar 

  37. M. Hencek and J. Zachar, “Calcium currents and conductances in the muscle membrane of the crayfish,” J. Physiol. (London),268, 51 (1977).

    Google Scholar 

  38. J. Hescheler, D. Pelzer, G. Trube, and W. Trautwein, “Does the organic calcium channel blocker D-600 act from inside or outside on the cardiac cell membrane?” Pflugers Arch., 393, 287 (1982).

    PubMed  Google Scholar 

  39. M. Kohlhardt, B. Bauer, H. Krause, and A. Fleckenstein, “Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors,” Pflügers Arch.,335, 309 (1972).

    Google Scholar 

  40. P. G. Kostyuk, “Interaction of toxins and divalent cations at the calcium channels of the neuronal membrane,” Hoppe-Seyler's Z. Physiol. Chem.,364, 615 (1983).

    Google Scholar 

  41. P. G. Kostyuk and O. A. Kryshtal' (O. A. Krishtal), “Separation of sodium and calcium currents in the somatic membrane of mollusc neurons,” J. Physiol. (London),270, 545 (1977).

    Google Scholar 

  42. P. G. Kostyuk and O. A. Kryshtal' (O. A. Krishtal), “Effect of calcium and calcium-chelating agents on the inward and outward currents in the membrane of mollusc neurons,” J. Physiol. (London),270, 569 (1977).

    Google Scholar 

  43. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), and P. A. Doroshenko, “Calcium currents in snail neurons. I. Identification of calcium current,” Pflügers Arch.,348, 83 (1974).

    Google Scholar 

  44. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), and P. A. Doroshenko, “Calcium currents in snail neurons. II. The effect of external calcium concentration on the calcium inward current,” Pflügers Arch.,348, 95 (1974).

    Google Scholar 

  45. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), and V. I. Pidoplichko, “Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells,” Nature,257, 691 (1975).

    PubMed  Google Scholar 

  46. P. G. Kostyuk, O. A. Kryshtal' (O. A. Kryshtai), and V. I. Pidoplichko, “Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride,” Nature, 267, 70 (1977).

    PubMed  Google Scholar 

  47. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), and V. I. Pidoplichko, “Gating current of calcium channels in the neuronal membrane,” Bioelectrochem. Bioenergeties,7, 421 (1980).

    Google Scholar 

  48. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), and V. I. Pidoplichko, “Calcium inward current and related charge movements in the membrane of snail neurones,” J. Physiol. (London),310, 403 (1981).

    Google Scholar 

  49. P. G. Kostyuk, O. A. Kryshtal' (O. A. Krishtal), V. I. Pidoplichko, and Yu. A. Shakhovalov, “Kinetics of calcium inward current activation,” J. Gen. Physiol.,73, 675 (1979).

    PubMed  Google Scholar 

  50. P. G. Kostyuk and S. L. Mironov, “Theoretical description of calcium channels in the neuronal membrane,” Gen. Physiol. Biophys.,1, 289 (1982).

    Google Scholar 

  51. P. G. Kostyuk, S. L. Mironov, and P. A. Doroshenko, “Energy profile of the calcium channel in the membrane of mollusc neurons,” J. Membrane Biol.,70, 181 (1982).

    Google Scholar 

  52. P. G. Kostyuk, S. L. Mironov, and Ya. M. Shuba, “Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons,” J. Membrane Biol.,76, 83 (1983).

    Google Scholar 

  53. P. G. Kostyuk, N. S. Veselovskii (N: S. Veselovsky), and S. A. Fedulova, “Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. II. Calcium currents,” Neuroscience,12, 2431 (1981).

    Google Scholar 

  54. O. A. Kryshtal' (O. A. Krishtal), and I. S. Magura, “Calcium ions as inward current carriers in mollusc neurons,” Comp. Biochem. Physiol.,35, 857 (1970).

    PubMed  Google Scholar 

  55. O. A. Kryshtal' (O. A. Krishtal), V. I. Pidoplichko, and Yu. A. Shakhovalov, “Properties of single calcium channels in the neuronal membrane,” Bioelectrochem. Bioenergetics,7, 195 (1980).

    Google Scholar 

  56. O. A. Kryshtal' (O. A. Krishtal), V. I. Pidoplichko, and Yu. A. Shakhovalov, “Conductance of the calcium channel in the membrane of snail neurons,” J. Physiol. (London),310, 423 (1981).

    Google Scholar 

  57. K. S. Lee, N. Akaike, and A. M. Brown, “Properties of internally perfused, voltage-clamped, isolated nerve cell bodies,” J. Gen. Physiol.,71, 489 (1978).

    PubMed  Google Scholar 

  58. R. Llinas, I. Z. Steinberg, and K. Walton, “Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoreical model for the calcium gate,” Proc. Natl. Acad. Sci. USA,73, 2918 (1976).

    Google Scholar 

  59. H. D. Lux and K. Nagy, “Single channel Ca2+ currents inHelix pomatia neurons,” Pflügers Arch.,391, 252 (1981).

    Google Scholar 

  60. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York (1977).

    Google Scholar 

  61. W. H. Moolennaar and I. Spector, “Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions,” J. Physiol. (London),278, 265 (1978).

    Google Scholar 

  62. P. T. Palade and W. Almers, “Slow Na+ and Ca+ currents across the membrane of frog skeletal muscle fibres,” Biophys. J.,21, 168a (1978).

    Google Scholar 

  63. T. D. Plant and N. B. Standen, “Calcium current inactivation in identified neurons ofHelix aspersa.” J. Physiol. (London),321, 273 (1981).

    Google Scholar 

  64. T. D. Plant, N. B. Standen, and T. A. Ward, “The effects of injection of calcium ions and calcium chelators on calcium channel inactivation inHelix neurons,” J. Physiol. (London),334, 189 (1983).

    Google Scholar 

  65. H. Reuter, “Localization of beta-adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle,” J. Physiol. (London),242, 429 (1974).

    Google Scholar 

  66. H. Reuter, C. F. Stevens, R. W. Tsien, and G. Yellen, “Properties of single calcium channels in cardiac cell culture,” Nature,297, 501 (1982).

    PubMed  Google Scholar 

  67. J. A. Sanchez and E. Stefani, “Kinetic properties of calcium channels of twitch muscle fibres of the frog,” J. Physiol. (London),337, 1 (1983).

    Google Scholar 

  68. I. Spector, “Electrophysiology of clonal nerve cell lines,” in: Excitable Cells in Tissue Culture. Plenum Publ. Corp., New York (1981), pp. 247–277.

    Google Scholar 

  69. N. B. Standen, “Calcium and sodium ions as charge carriers in the action potential of an identified snail neuron,” J. Physiol. (London),249, 241 (1975).

    Google Scholar 

  70. N. B. Standen, “Voltage-clamp studies of the calcium inward current in an identified snail neuron: comparison with the sodium inward current,” J. Physiol. (London),249, 253 (1975).

    Google Scholar 

  71. N. B. Standen and P. R. Stanfield, “A binding-site model for calcium channel inactivation that depends on calcium entry,” Proc. Roy. Soc. London,217, 101 (1982).

    Google Scholar 

  72. K. Takahashi and M. Yoshii, “Effects of internal free calcium upon the sodium and calcium channels in the tunicate egg analyzed by the internal perfusion technique,” J. Physiol. (London),279, 519 (1978).

    Google Scholar 

  73. D. Tillotson, “Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons,” Proc. Natl. Acad. Sci. USA,76, 1497 (1979).

    PubMed  Google Scholar 

  74. D. Tillotson and R. Horn, “Ca substitution for internal K reveals an inactivating Ca current inAplysia neurons,” Biophys. J.,21, 178 (1978).

    Google Scholar 

  75. L. Toll. “Calcium antagonists. High-Affinity binding and inhibition of calcium transport in a clonal cell line,” J. Biol. Chem.,257, 13189 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziologicheskii Zhurnal SSSR imeni I. M. Sechenova, Vol. 70, No. 8, pp. 1081–1091, August, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, P.G. Calcium channels in the cell membrane. Neurosci Behav Physiol 16, 401–410 (1986). https://doi.org/10.1007/BF01185371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01185371

Key words

Navigation