Skip to main content
Log in

Failure mechanics in ternary composites of polypropylene with inorganic fillers and elastomer inclusions

Part II Fracture toughness

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of phase morphology, interfacial adhesion and filler particle shape and volume fraction on the fracture toughness of polypropylene (PP) filled with CaCO3 or Mg(OH)2 and ethylene-propylene elastomer (EPR) were investigated. Separation of the inorganic filler and elastomer particles was achieved using maleic-anhydride-grafted PP (MPP) to enhance the inorganic filler-matrix adhesion. Encapsulation of the rigid filler by the elastomer was achieved by using maleic-anhydride-grafted EPR (MEPR) to increase the inorganic filler-elastomer adhesion. The two limiting morphologies differed significantly in fracture toughness under impact loading at the same material composition. A model for a mixed mode of failure, accounting for the plane strain and plane stress contributions to the strain energy release rate,G c, was used to predict the upper and lower limits forG c for the two limiting morphologies over an interval of elastomer volume fractions,v e, from 0–0.2 at a constant filler volume fraction,V f = 0.3, and over the filler volume fraction from 0–0.4 at constant EPR content. The role of material yield strength in controlling fracture toughness has been described successfully using Irwin's analysis of plastic zone size. The presence of elastomer enhances both the critical strain energy release rate for crack initiation,G c, and the resistance to crack propagation as expressed by Charpy notched impact strength for the two limiting morphologies. Satisfactory agreement was found between the experimental data and predictions of upper and lowerG c limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Hodgkinson, A. Savadori andJ. G. Williams,J. Mater. Sci. 18 (1983) 2319.

    Google Scholar 

  2. P. L. Fernando andJ. G. Williams,Polym. Eng. Sci. 20 (1980)215.

    Google Scholar 

  3. S. Wu,Polymer 26 (1985) 1855.

    Google Scholar 

  4. Idem, J. Appl Polym. Sci. 35 (1988) 549.

    Google Scholar 

  5. R. J. M. Borggreve,Polymer 28 (1987) 1489.

    Google Scholar 

  6. R. J. M. Borggreve, R. J. Gaymans andA. R. Luttmer,Makromol. Chem. Macromol Symp. 16 (1988) 195.

    Google Scholar 

  7. B. Z. Jang, D. R. Uhlmann andJ. B. Vander Sande,J. Appl. Polym. Sci. 29 (1984) 3409.

    Google Scholar 

  8. Idem, ibid. 29 (1984) 4377.

    Google Scholar 

  9. Idem, ibid. 30 (1985) 2485.

    Google Scholar 

  10. J. Jancar, A. DiAnselmo andA. T. DiBenedetto,Polym. Eng. Sci. 33 (1993) 559.

    Google Scholar 

  11. J. Jancar, A. Dianselmo, A. T. Dibenedetto andJ. Kucera,J. Polymer 34 (1993) 1684.

    Google Scholar 

  12. J. Kolarik, F. Lednicky, J. Jancar andB. Pukanszky,Polym. Commun. 30 (1991) 201.

    Google Scholar 

  13. J. Kolarik, F. Lednicky andB. Pukanszky, in “Proceedings of the 6th International Conference on Composite Materials” Edited by F. L. Mathews, N. C. R. Bushell, J. M. Hodgkinson and J. Mordon. (Elsevier, London, 1987) p. 452.

    Google Scholar 

  14. W. -Y. Chiang, W. -D. Yang andB. Pukanszky,Polym. Eng. Sci. 32 (1992) 641.

    Google Scholar 

  15. J. Jancar andA. T. DiBenedetto, in “Proceedings of the 51st ANTEC SPE”, Brookfield New Orleans, 9–12 May 1993, p. 1698

  16. Idem, in “Proceedings of the 24th IUPAC Symposium on Macromolecules”, Prague, 12–18 July 1993 (VSP Publishers) p. 399.

  17. Idem, J. Mater. Sci. 28 (1993) 0000.

    Google Scholar 

  18. F. A. McClintock andG. R. Irwin, “Fracture Toughness Testing” (ASM, Philadelphia 1965) p. 85.

    Google Scholar 

  19. J. Williams, “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, 1983) p. 100.

    Google Scholar 

  20. A. J. Kinlock andR. J. Young, “Fracture Behavior of Polymers” (Elsevier, London, 1983) Ch. 6, p. 182.

    Google Scholar 

  21. M. Parvin andJ. G. Williams,J. Mater. Sci. 10 (1975) 1883.

    Google Scholar 

  22. Idem, Int. J. Fract. 11 (1975) 963.

    Google Scholar 

  23. R. A. Fraser andI. M. Ward,Polymer 19 (1978) 220.

    Google Scholar 

  24. G. L. Pitman andI. M. Ward,ibid. 20 (1979) 895.

    Google Scholar 

  25. P. J. Hine, R. A. Duckett andI. M. Ward,ibid. 22 (1981) 1745.

    Google Scholar 

  26. L. E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol 11 (Dekker New York, 1974) p. 387.

    Google Scholar 

  27. J. Jancar, A. DiAnselmo andA. T. DiBenedetto,Polym. Eng. Sci. 32 (1992) 1394.

    Google Scholar 

  28. L. Nicolais andM. Narkis,ibid. 11 (1971) 194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancar, J., Dibenedetto, A.T. Failure mechanics in ternary composites of polypropylene with inorganic fillers and elastomer inclusions. J Mater Sci 30, 2438–2445 (1995). https://doi.org/10.1007/BF01184598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184598

Keywords

Navigation