Skip to main content
Log in

Correlation of geometry effects with fracture toughness by damage equivalence

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The near crack tip porosity fields in different fracture specimens, single edge notched, single edge notched loaded in centre of ligament, three point bending specimens, and small scale yielding (SSY) mode have been studied by the finite deformation finite element method. The presence and subsequent growth of smaller-scale voids were taken into account by using Gurson's model to describe the constitutive behaviour of the material. Based on damage equivalence at a characteristic position in the SSY mode and actual fracture specimens, the ratio of scaling parameters,J values, in both modes was obtained, and was used to eliminate the geometry dependence of fracture toughness through correlations to the small scale yielding mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rice,J. Appl. Mech. 35 (1968) 379.

    Google Scholar 

  2. A. M. Al-Ani andJ. W. Hancock,J. Mech. Phys. Solids 39 (1991) 23.

    Google Scholar 

  3. N. P. O'Dowd andC. F. Shih,ibid. 39 (1991) 989.

    Google Scholar 

  4. Idem., ibid. 40 (1991) 939.

    Google Scholar 

  5. C. Betegon andJ. W. Hancock,J. Appl. Mech. 40 (1991) 104.

    Google Scholar 

  6. R. H. Dodds andC. F. Shih, in “Proceedings of the IAEA/CSNI Specialists' Meeting on Fracture Mechanics Verification by Large Scale Testing”, Tennessee, 26–29 October (1992).

  7. Y. C. Li andT. C. Wang,Scientia Sinica 29A (1986) 941.

    Google Scholar 

  8. M. F. Ashby, in “Fracture Mechanics, Current Status, Future Prospects” (Pergamon Press, 1979) p. 1.

  9. C. D. Beachem,Trans. ASM. 56 (1963) 318.

    Google Scholar 

  10. C. D. Beachem andG. R. Yoder,Metall. Trans. 4 (1973) 1145.

    Google Scholar 

  11. K-H. Schwalbe,Engng. Fracture Mech. 9 (1977) 795.

    Google Scholar 

  12. G. E. Pellissier,ibid. 1 (1968) 55.

    Google Scholar 

  13. G. Green andJ. F. Knott,J. Engng Mater. Technol. 75 (1976) 37.

    Google Scholar 

  14. T. B. Cox andJ. R. Low,Metall. Trans. 5 (1974) 1457.

    Google Scholar 

  15. S. H. Goods andL. M. Brown,Acta Metall. 27 (1979) 1.

    Google Scholar 

  16. R. O. Ritchie, J. F. Knott andJ. R. Rice,J. Mech. Phys. Solids 21 (1973) 395.

    Google Scholar 

  17. A. Jagota, C. H. Hui andP. R. Dawson,Int. J. Fracture 33 (1987) 111.

    Google Scholar 

  18. R. H. Dodds, T. L. Anderson andM. T. Kirk,ibid. 48 (1991) 1.

    Google Scholar 

  19. T. L. Anderson andR. H. Dodds,J. Test. Eval. 19 (1991) 123.

    Google Scholar 

  20. J. R. Rice andM. A. Johnson, in “Inelastic Behaviour of Solids”, edited by M. F. Kanninen, W. Adler, A. Rosenfield and R. Jaffee (McGraw-Hill, 1970) 641.

  21. J. R. Rice andD. M. Tracey,J. Mech. Phys. Solids 17 (1969) 201.

    Google Scholar 

  22. A. Aoki, K. Kishimoto, A. Takeya andM. Sakata,Int. J. Fracture 24 (1984) 267.

    Google Scholar 

  23. N. Aravas andR. M. McMeeking,ibid. 29 (1985) 21.

    Google Scholar 

  24. Idem, J. Mech. Phys. Solids 33 (1985) 25.

    Google Scholar 

  25. A. L. Gurson,J. Engng Mater. Technol. 77 (1977) 2.

    Google Scholar 

  26. V. Tvergaard,J. Mech. Phys. Solids 30 (1982) 399.

    Google Scholar 

  27. V. Tvergaard andA. Needleman,Acta Metall,32 (1984) 157.

    Google Scholar 

  28. A. Needleman andV. Tvergaard,J. Mech. Phys. Solids 35 (1987) 151.

    Google Scholar 

  29. F. Ma andZ. B. Kuang,Acta Metall. Mater. 42 (1994) 497.

    Google Scholar 

  30. J. W. Hancock andCowling,Metal Sci. 14 (1980) 293.

    Google Scholar 

  31. C. C. Chu andA. Needleman,J. Engng Mater. Technol. 102 (1980) 249.

    Google Scholar 

  32. R. Hill “The Mathematical Theory of Plasticity” (Oxford University Press, 1950).

  33. F. Ma andZ-B. Kuang, in “Proceeding of the Joint FEFG/ICF”, edited by S. H. Teoh and K. H. Lee (Singapore, 1991) p. 450.

  34. Z. B. Kuang,Engng Fracture Mech. 19 (1984) 1161.

    Google Scholar 

  35. V. Tvergaard,Int. J. Solids Struct. 18 (1982) 657.

    Google Scholar 

  36. C. F. Shih,J. Mech. Phys. Solids 29 (1981) 305.

    Google Scholar 

  37. J. F. Knott, in “Conference Proceedings, Micromechanisms of Crack Extension”, edited by J. F. Knott (1980).

  38. G. Leroy, J. D. Embury, G. Edwards andM. F. Ashby,Acta Metall. 29 (1981) 1509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave, Department of Mechanical and Intelligent Systems Engineering, Tokyo Institute of Technology, Tokyo, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F. Correlation of geometry effects with fracture toughness by damage equivalence. J Mater Sci 30, 2330–2337 (1995). https://doi.org/10.1007/BF01184582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184582

Keywords

Navigation