Skip to main content
Log in

Equilibrium equations for plane slender bars undergoing large shear deformations

Gleichgewichtsbedingungen ebener schlanker Stäbe bei großen Schubverformungen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Equilibrium equations for plane slender bars are derived using the principles of Continuum Solid Mechanics. Large shear deformations are accounted for. The equations are derived in an explicit form, yielding upon introduction of a constitutive law (not given here) a system of differential equations to be integrated on the undeformed length. Within certain limitations, the equations, derived in an exact form, incorporate expressions for finite strain. The stress distribution along a deformed section is studied.

Zusammenfassung

Gleichgewichtsbedingungen ebener schlanker Stäbe werden unter Verwendung der Sätze der Kontinuumstechnik hergeleitet. Große Schubverformungen werden berücksichtigt. Die Gleichungen werden in expliziter Form angegeben, sie führen mit einem hier nicht angegebenen Werkstoffgesetz auf ein System von Differentialgleichungen. Mit gewissen Einschränkungen schließen diese in exakter Form angegebenen Gleichungen die für endliche Verformungen ein. Die Spannungsverteilung in einem verformten Abschnitt wird untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\vec r\) :

position vector of material point in undeformed state

\(\overrightarrow R\) :

position vector of material point in deformed state

\(\overrightarrow U\) :

displacement vector of material point

u :

displacement component inx-direction

w :

displacement component inz-direction

\(\vec e_i\) :

covariant base vector in deformed state (i=1,2)

G ij :

metric tensor in deformed state

g ij :

metric tensor in undeformed state

θ:

slope of geometrical axis (elastic line)

γ:

shear deformation angle

ψ:

rotation of plane section of bar

K :

curvature of geometrical axis

\(\overline K\) :

curvature of geometrical axis due to bending only

\(\vec t\) :

unit tangent vector to geometrical axis

\(\overrightarrow N\) :

unit normal vector to geometrical axis

η(ij) :

Lagrangian strain tensor

σij :

stress tensor

σ(ij) :

physical stress tensor

N :

normal force (parallel to geometrical axis) acting on plane section

S :

shear force (parallel to deformed section) acting on plane section

M :

bending moment

H :

horizontal external force acting on plane section

V :

vertical external force acting on plane section

\(\vec f\) :

vector of conservative body forces uniformly distributed along geometrical axis

f x :

component of\(\vec f\) inx-direction

f z :

component of\(\vec f\) inz-direction

\(\vec n\) :

unit normal vector to plane section

F i :

force component on distorted plane section

F (i) :

physical force component on distorted plane section

F ij :

component ofF i inj-direction

α:

inclination angle ofF 11 toF 1 (see Fig. 8)

References

  1. Antman, S. S., andW. H. Warner: Dynamical Theory of Hyperelastic Rods. Arch. Rat. Mech. Anal.23, 135 (1966).

    Google Scholar 

  2. Budlansky, B.: Remarks on Theories of Solid and Structural Mechanics. Harvard University, Cambridge (Mass.), 1967.

    Google Scholar 

  3. Green, A. E., andN. Laws: A General Theory of Rods. Proc. Royal Soc.A 293, 145 (1966).

    Google Scholar 

  4. Green, A. E., N. Laws, andP. M. Naghdi: A Linear Theory of Straight Elastic Rods. Arch. Rat. Mech. Anal.25, 285 (1967).

    Google Scholar 

  5. Leonard, R. W., andB. Budiansky: On Traveling Waves in Beams. Report1173, NACA, 1954.

  6. Lutchansky, M., andL. M. Slavin: Shear Lag Approximation of Solutions of Nearly Unidirectional Problems in Elastic Media. Int. J. Solids Struct.6, 785 (1970).

    Google Scholar 

  7. Sedov, L. I.: Introduction to the Mechanics of a Continuous Medium. Addison-Wisley Publ. Co. 1965.

  8. Truesdell, C.: The Physical Components of Vectors and Tensors. Z. Angew. Math. Mech.33, 345 (1953).

    Google Scholar 

  9. Volterra, E.: The Equations of Motion for Curved and Twisted Elastic Bars Reduced by the Use of the Method of Internal Constraints. Ing. Arch.24, 392 (1956).

    Google Scholar 

  10. Washizu, K.: Variational Methods in Elasticity and Plasticity. London: Pergamon. 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisanty, A., Tene, Y. Equilibrium equations for plane slender bars undergoing large shear deformations. Acta Mechanica 17, 263–275 (1973). https://doi.org/10.1007/BF01183760

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183760

Keywords

Navigation