Skip to main content
Log in

Thermodynamic influences on shock waves in inhomogeneous elastic bodies

Thermodynamische Einflüsse auf Stoßwellen in inhomogenen elastischen Körpern

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper, the differential equation governing the behavior of shock waves propagating in inhomogeneous thermoelastic bodies is derived. The implications of this equation on the local behavior of the amplitudes are examined. It is shown that the behavior depends on the relative magnitudes of a number λ, called the critical jump in strain gradient, and the jump in strain gradient across the shocks.

Zusammenfassung

In dieser Arbeit wird die das Verhalten von in inhomogenen thermoelastischen Körpern sich ausbreitenden Stoßwellen charakterisierende Differentialgleichung abgeleitet. Die Folgerungen auf das lokale Verhalten der Amplituden wird untersucht. Es wird gezeigt, daß das Verhalten von der relativen Größe einer Zahl λ, genannt kritischer Sprung des Verzerrungsgradienten, und dem Sprung im Verzerrungsgradienten über den Stoß abhängt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethe, H.: The theory of shock waves for an arbitrary equation of state. Office of Scientific Research and Development, Division B, Report No. 545 (1942).

  2. Weyl, H.: Shock waves in arbitrary fluids. Comm. Pure Appl. Math.2, 103–122 (1949).

    Google Scholar 

  3. Harris, A. J.: The decay of plane, cylindrical and spherical shock waves, in: Underwater explosion research. Vol. 1, entitled: Shock Waves. A compendium of British and American Reports, Washington, D. C., Office of Naval Research (1950).

    Google Scholar 

  4. Thomas, T. Y.: Extended compatibility conditions for the study of discontinuity in continuum mechanics. J. Math. Mech.6, 311–322 (1951).

    Google Scholar 

  5. Duvall, G. E., andR. C. Alverson: Fundamental research in support of vela-uniform, Semiannual Technical Summary Report No. 4, Menlo Park, Calif., Stanford Research Institute (1963).

    Google Scholar 

  6. Achenbach, J. D., andG. Herrmann: Propagation of second-order thermomechanical disturbances in viscoelastic solids. Proceedings IUTAM Symposium East Kilbride, June 25–28, 1968 (Boley, B. A., ed.). Wien-New York: Springer 1970.

    Google Scholar 

  7. Chen, P. J., andM. E. Gurtin: On the growth of one-dimensional shock waves in materials with memory. Arch. Rational Mech. Anal.36, 33–46 (1970).

    Google Scholar 

  8. Chen, P. J.: One dimensional shock waves in elastic non-conductors. Arch. Rational Mech. Anal.43, 350–362 (1971).

    Google Scholar 

  9. Chen, P. J., andM. E. Gurtin: Growth and decay of one-dimensional shock waves in fluids with internal state variables. Phys. Fluids14, 1091–1094 (1971).

    Google Scholar 

  10. Chen, P. J.: One dimensional acceleration waves in inhomogeneous elastic non-conductors. Acta Mech. (forthcoming).

  11. Chen, P. J.: One-dimensional shock waves in inhomogeneous elastic materials. Int. J. Solids Struct.8, 409–414 (1972).

    Google Scholar 

  12. Chen, P. J., andM. E. Gurtin: Thermodynamic influences on the growth of one-dimensional shock waves in materials with memory. Zeit. angew. Math. Phys.23, 69–79 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P.J. Thermodynamic influences on shock waves in inhomogeneous elastic bodies. Acta Mechanica 17, 247–253 (1973). https://doi.org/10.1007/BF01183758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183758

Keywords

Navigation