Skip to main content
Log in

Implementation of matrix decomposition structures of 2-D digital filters via VLSI array processors

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes an implementation of 2-D FIR and IIR linear digital filters via VLSI array processors. The underlying realization structures are based on the matrix decomposition approach. The 2-D concurrent processing is used in order to implement the row and column delays within the cycle time. A high degree of concurrency is achieved by exploiting the pipelining of the array processors with the inherent parallelism of the matrix decomposition structure. The resulting structures are modular, and regular, use only local communication and internal local feedback loops, and achieve high throughput and sampling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rosenfeld and A. C. Kak,Digital Picture Processing, Academic Press, New York, 1986.

    Google Scholar 

  2. A. N. Venetsanopoulos and V. Cappellini, Real-time image processing, inMultidimensional Systems: Techniques and Applications, Marcel Dekker, New York, 1986, Ch. 8, pp. 345–399.

    Google Scholar 

  3. Proc. IEEE, Special issue on image processing, vol. 69, May 1981.

  4. S. K. Mitra and M. P. Ekstrom,Two-Dimensional Digital Signal Processing, Doweden, Hutchinson and Ross, Inc., Benchmark Papers in Electrical Engineering and Computer Sciences, vol. 20, 1978.

    Google Scholar 

  5. B. G. Mertzios and A. N. Venetsanopoulos, Modular realization ofm-dimensional filters,Signal Processing, vol. 7, pp. 351–369, 1984.

    Google Scholar 

  6. A. N. Venetsanopoulos and B. G. Mertzios, A decomposition theorem and its implications to the design and realization of two-dimensional filters,IEEE Trans. on Acoust., Speech. Signal Processing, vol. ASSP-33, pp. 1562–1574, Dec. 1985.

    Google Scholar 

  7. A. N. Venetsanopoulos and B. G. Mertzios, A general implementation technique for 2-D digital filters,Proc. 6th Summer Symposium on Circuit Theory, Prague, Czechoslovakia, pp. 176–180, July 1982.

  8. S. Treitel and J. L. Shanks, The design of multistage separable planar filters,IEEE Trans. on Geosci., Electron., vol. GE-9, pp. 10–27, 1971.

    Google Scholar 

  9. H. C. Andres and C. L. Patterson, Singular value decompositions and digital image processing,IEEE Trans. on Acoust, Speech, Signal Processing, vol. ASSP-24, pp. 26–53, 1986.

    Google Scholar 

  10. F. R. Gantmacher,The Theory of Matrices, vol. 1, Chelsea, New York, 1974.

    Google Scholar 

  11. C. L. Nikias, A. P. Chrysafis, and A. N. Venetsanopoulos, The LU decomposition and its implications to the realization of two-dimensional digital filters,IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 694–711, June 1985.

    Google Scholar 

  12. B. G. Mertzios and A. N. Venetsanopoulos, Walsh matrix implementation of M-D filters by the decomposition theorem,Proc. Int. Conf. on Digital Signal Processing, pp. 64–68, Florence, Italy, September 5–8, 1984.

  13. E.G. Mertzios and A. N. Venetsanopoulos, Fast block implementation of two-dimensional FIR digital filters via the Walsh-Hadamard decomposition,International Journal of Electronics, vol. 68 no. 6, pp. 991–1004, 1990.

    Google Scholar 

  14. A. N. Venetsanopoulos and C. L. Nikias, Design and realization of multidimensional digital filters via matrix decomposition approaches, inGeophysical Data Processing, vol. 2, pp. 263–305, 1985.

    Google Scholar 

  15. H. H. Chiang, C. L. Nikias, and A. N. Venetsanopoulos, Efficient implementations of quadratic digital filters,IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1511–1528, Dec. 1986.

    Google Scholar 

  16. H. H. Chiang, C. L. Nikias, and A. N. Venetsanopoulos, Reconfigurable systolic array implementation of quadratic digital filters,IEEE Trans. on Circuits Syst., vol. CAS-33, no. 8, pp. 845–848, Aug. 1986.

    Google Scholar 

  17. B. G. Mertzios, G. L. Sicuranza, and A. N. Venetsanopoulos, Efficient realizations of two-dimensional quadratic digital filters,IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-37, no. 5, pp. 765–768, May 1989.

    Google Scholar 

  18. B. G. Mertzios and A. N. Venetsanopoulos, VLSI implementation of two-dimensional digital filters via two-dimensional filter chips, Joint Special Issue on VLSI Analog and Digital Signal Processing,IEEE Trans. on Circuits Syst., vol. CAS-33, pp. 239–249,

  19. B. G. Mertzios and A. N. Venetsanopoulos, VLSI implementation of two-dimensional digital filters via two-dimensional filter chips, Joint Special Issue on VLSI Analog and Digital Signal Processing,IEEE Journal Solid State Circuits, vol. SC-21, pp. 129–139, Feb. 1986.

    Google Scholar 

  20. B. G. Mertzios and A. N. Venetsanopoulos, Block realization of 2-D IIR digital filters based on the decomposition theorem,Proc. of the Seventh European Conf. on Circuit Theory and Design, ECCTD-85, pp. 435–438, Prague, Czechoslovakia, Sept. 1985.

  21. B. G. Mertzios and A. N. Venetsanopoulos, Block decomposition structure for the fast modular implementation of two-dimensional digital filters,Circuits, Systems, and Signal Processing, vol. 8, pp. 163–187, 1989.

    Google Scholar 

  22. B. G. Mertzios and A. N. Venetsanopoulos, Fast block implementation of two-dimensional FIR digital filters via the Walsh-Hadamard decomposition,Int. J. Electronics, vol. 68, no. 6, pp. 991–1004, 1990.

    Google Scholar 

  23. H. T. Kung, Why systolic architectures,Computer, vol. C-15, pp. 37–45, January 1982.

    Google Scholar 

  24. S-.Y. Kung,VLSI Array Processors, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  25. S.-Y. Kung, On supercomputing with systolic/wavefront array processors,Proc. IEEE, vol. 72, pp. 864–884, July 1984.

    Google Scholar 

  26. S.-Y. Kung, From transversal filtering to VLSI wavefront array,Proc. VLSI 83, F. Anceau and E. J. Aas, (eds.), Elsevier Science Publishing, B.V., North-Holland, Amsterdam, 1983, pp. 247–261.

    Google Scholar 

  27. H. H. Lu, E. A. Lee, and D. G. Messerschmitt, Fast recursive filtering with multiple slow processing elements,IEEE Trans. on Circuits Syst., vol. CAS-32, no. 11, pp. 1119–1129, Nov. 1985.

    Google Scholar 

  28. B. G. Mertzios and V. L. Syrmos, VLSI array processors block implementation of IIR digital filters,Circuits, Systems, and Signal Processing, vol. 7, pp. 79–94, 1988.

    Google Scholar 

  29. B. G. Mertzios, Fast implementation of multivariable linear systems via VLSI array processors,COMPEL, vol. 10, no. 1, pp. 1–10, 1991.

    Google Scholar 

  30. B. G. Mertzios, Fast block implementation of two-dimensional recursive digital filters via VLSI array processors,Archiv für Elektronik und Übertragungstechnik (AEU), vol. 44 no. 1, pp. 50–58, 1990.

    Google Scholar 

  31. B. G. Mertzios and A. N. Venetsanopoulos, Implementation of quadratic digital filters via VLSI array processors,Archiv für Elektronik und Übertragungstechnik (AEU), vol. 43, no. 3, pp. 153–157, 1989.

    Google Scholar 

  32. S. K. Rao and Th. Kailath, VLSI arrays signal processing,IEEE Trans. on Circuits Syst., vol. CAS-32, pp. 1105–1118, Nov. 1985.

    Google Scholar 

  33. K. K. Parhi and D. G. Messerschmitt, Concurrent cellular VLSI adaptive filter architectures,IEEE Trans. on Circuits Syst., vol. CAS-34, no. 10, pp. 1141–1151, Oct. 1987.

    Google Scholar 

  34. K. K. Parhi and D. G. Messerschmitt, Pipeline interleaving and parallelism in recursive digital filters, Part I: Pipelining using scattered look-ahead decomposition,IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-37, pp. 1099–1117, July 1989.

    Google Scholar 

  35. K. K. Parhi and D. G. Messerschmitt, Pipeline interleaving and parallelism in recursive digital filters, Part II: Pipelined incremental block filtering,IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-37, pp. 1118–1134, July 1989.

    Google Scholar 

  36. B. G. Mertzios, Block realization of 2-D IIR, digital filters,Signal Processing, vol. 7, pp. 135–143, Oct. 1984.

    Google Scholar 

  37. K. K. Parhi and D. G. Messerschmitt, A bit-parallel bit level recursive filter architecture,Proc. IEEE Int. Conf. Comput. Design, New York, 1986.

  38. A. Fettweis, Multidimensional circuits and systems theory,Proc. IEEE Int. Symposium on Circuits Syst., vol. 3, pp. 951–957, Montreal, Canada, May 1984.

  39. T. Aboulnasr and W. Steenart, Real-time systolic array processor for 2-D spatial filtering,Proc. 1986 European Conf. on Signal Processing, EUSIPCO-86, pp. 687–690, The Netherlands, Sept. 1986.

  40. M. J. Foster and H. T. Kung, Design of special VLSI chips,Proc. 7th Symposium on Computer Architecture, La Baule, France, pp. 300–307, May 1980.

  41. H. V. Jagadish, R. G. Mathews, T. Kailath, and J. A. Newkirk, A study of pipelining in computing arrays,IEEE Trans. on Comput., vol. C-35, no. 5, pp. 431–440, May 1986.

    Google Scholar 

  42. J. R. Jump and S. R. Ahuja, Effective pipelining of digital systems,IEEE Trans. on Computers, vol. C-27, pp. 855–865, Sept. 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertzios, B.G., Venetsanopoulos, A.N. Implementation of matrix decomposition structures of 2-D digital filters via VLSI array processors. Circuits Systems and Signal Process 14, 39–55 (1995). https://doi.org/10.1007/BF01183747

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183747

Keywords

Navigation