Skip to main content
Log in

Eccentric crack in a rectangular piezoelectric medium under electromechanical loadings

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The solutions of an eccentric crack problem in a rectangular piezoelectric ceramic medium under combined anti-plane shear and in-plane electrical loadings are obtained by the continuous electric crack face condition. Fourier transforms and Fourier series are used to reduce the problem to two pairs of dual integral equations, which are then expressed by a Fredholm integral equation of the second kind. Numerical values of the stress intensity factor and the energy release rate are obtained to show the influence of the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pak, Y. E.: Linear electroelastic fracture mechanics of piezoelectric materials. Int. J. Fract.54, 79–100 (1992).

    Google Scholar 

  2. Shindo, Y., Narita, F., Tanaka, K.: Electroelastic intensifications near anti-plane shear crack in orthotropic piezoelectric ceramic strip. Theor. Appl. Fract. Mech.25, 65–71 (1996).

    Google Scholar 

  3. Shindo, Y., Tanaka, K., Narita, F.: Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mech.120, 31–45 (1997).

    Google Scholar 

  4. Kwon, S. M., Lee, K. Y.: Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading. Int. J. Solids Struct.37, 4859–4869 (2000).

    Google Scholar 

  5. Chen, Z. T., Karihaloo, B. L.: Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact. Int. J. Solids Struct.36, 5125–5133 (1999).

    Google Scholar 

  6. Pak, Y. E.: Crack extension force in a piezoelectric material. Trans. ASME, J. Appl. Mech.57, 647–653 (1990).

    Google Scholar 

  7. Park, S. B., Sun, C. T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc.78, 1475–1480 (1995).

    Google Scholar 

  8. Suo, Z., Kuo, C. M., Barnett, D. M., Willis, J. R.: Fracture mechanics for piezoelectric ceramics. Journal Mech. Phys. Solids40, 739–765 (1992).

    Google Scholar 

  9. Suo, Z.: Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids41, 1155–1176 (1993).

    Google Scholar 

  10. Tobin, A. G., Pak, Y. E.: Effect of electric field on fracture behavior of PZT ceramics. Proc. SPIE, Smart Structures and Materials1916, 78–86 (1993).

    Google Scholar 

  11. Tiersten, H. F., Sham, T. L.: On the necessity of including electricals conductivity in the description of piezoelectric fracture in real materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control45, 1–3 (1998).

    Google Scholar 

  12. Gao, C. F., Fan, W. X.: A general solution for the plane problem in piezoelectric media with collinear cracks. Int. J. Engng Sci.37, 347–363 (1999).

    Google Scholar 

  13. Gao, H., Zhang, T. Y., Tong, P.: Local and global energys release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids45, 491–510 (1997).

    Google Scholar 

  14. Zhang, T. Y., Tong, P.: Fracture mechanics for a mode III crack in a piezoelectric material. Int. J. Solids Struct.33, 343–359 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S.M., Lee, K.Y. Eccentric crack in a rectangular piezoelectric medium under electromechanical loadings. Acta Mechanica 148, 239–248 (2001). https://doi.org/10.1007/BF01183681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183681

Keywords

Navigation