Skip to main content
Log in

Fatigue load monitoring in steel bridges with Rayleigh Waves

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Fatigue load monitoring is a useful tool for safety assessment of highway bridges. Monitoring has been conventionally done using strain gages. Installation of these gages is labor-intensive and requires safety precautions. Noncontact electromagnetic-acoustic transducers (EMATs) offer an attractive alternative. EMATs were used to transmit and receive Rayleigh Waves (RW). Changes in time of flight of RW due to the acoustoelastic effect can in principle be used to monitor stresses resulting from vehicular traffic. We have performed proof-of-concept experiments to demonstrate the feasibility of this approach. Specimens were subjected to bending to simulate the load environment in bridges. RW EMATs were used to measure the relatively low stresses (less than 14 MPa) typically experienced by bridge girders. The signal-to-noise ratio achievable with our system should allow adequate stress resolution for fatigue load monitoring. Factors which could impede technology transfer were considered. The primary obstacle appears to be variability in time of flight (TOF) due to magnetostriction. If the magnetic state is changed (e.g., by scanning of the EMATs) the TOF can change, even at constant stress. We have characterized this effect. If a proper installation procedure is followed, fatigue load monitoring with RW EMATs is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United States Department of Transportation (USDOT), Federal Highway Administration, Secretary of Transportation: Report to Congress: The Status of the Nation's Highways: Condition and Performance, Technical Report Senate Document 99-6, U.S. Government Printing Office, Washington, D.C. (1985).

    Google Scholar 

  2. United States Department of Transportation (USDOT), Federal Highway Administration, Highway Bridge Replacement and Rehabilitation Program: Sixth Annual Report to Congress, Technical Report Senate Document 99-12, U.S. Government Printing Office, Washington, D.C. (1985).

    Google Scholar 

  3. W. T. McKeel, C. E. Maddox, H. L. Kinnier, and C. F. Galambos, Loading History Study of Two Highway Bridges in Virginia, Highway Research Record No. 382, Highway Research Board (1972).

  4. P. B. Keating, J. M. Kulicki, D. R. Mertz, and C. R. Hess, Economical and Fatigue Resistant Steel Bridge Details, Participant Notebook, National Highway Institute Course No.: 13049, June (1990).

  5. G. R. Cudney, The Effects of Loading on Bridge Life, Michigan Department of State Highways, Res. Rept. R-638.

  6. D. S. Hughes and J. S. Kelly,Phys. Rev. 92(5): 1145, (1953).

    Article  MATH  Google Scholar 

  7. D. Crecraft,Ultrasonics 6(2):117 (1968).

    Article  Google Scholar 

  8. M. Hirao, H. Ogi, and H. Fukuoka,Res. Nondestr. Eval. 5:211 (1994).

    Google Scholar 

  9. A. Brokowski and J. Deputat, Ultrasonic Measurements of Residual Stresses in Rails, Proc. Eleventh World Conf. on Nondest. Test., Vol. 1, p. 592, Las Vegas, NV (1985).

    Google Scholar 

  10. H. Fukuoka, H. Toda, K. Hirakawa, H. Sakamoto, and Y. Togo, inAcoustoelastic measurement of residual stresses in the rim of railroad wheels, Wave Prop. in Inhomogeneous Media and Ultrasonic Nondestructive Evaluation (Vol. 6), G. C. Johnson, ed. (ASME, New York, 1984), p. 185.

    Google Scholar 

  11. E. R. Schneider, R. Herzer, D. Busche, and H. Frotscher, Reliability Assessment of Railroad Wheels by Ultrasonic Stress Analysis, Third European Conf. on Residual Stress, Nov. 4–6, Frankfurt, FRG (1992).

  12. R. E. Schramm, A. V. Clark, and T. J. McGuire, Ultrasonic Measurement of Residual Stress in Railroad Wheel Rims, Proc. Tenth Int. Wheelset Conf., p. 151, The Inst. of Engineers, Australia, Nat. Conf. Pub. No. 92/10, Sydney (1992).

    Google Scholar 

  13. R. B. Thompson, W.-Y. Lu, and A. V. Clark, SEM Monograph in Techniques for Residual Stress Measurement: Chapter 7, Ultrasonic Techniques, to be published by the Society for Experimental Mechanics.

  14. C. C. Spyrakos and I. Latheef, Experimental Evaluation of Dynamic Load Factor on Highway Bridges, W VA University Rep. No. CFC-92-136.

  15. P. P. Christiano, L. E. Goodman, and C. N. Sun, Bridge Stress-Range History, Highway Research Record No. 382, Highway Research Board (1972).

  16. P. Fuchs, unpublished results.

  17. M. Hayes and R. S. Rivlin,Arch. Rat. Mech. Anal. 8:358 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hirao, H. Fukuoka, and K. Hori,J. Appl. Mech. 48:119 (1981).

    Article  MATH  Google Scholar 

  19. Y. Iwashimizu, and O. Kobori,J. Acoust. Soc. Am. 64(3):910 (1978).

    Article  MATH  Google Scholar 

  20. P. P. Delsanto and A. V. Clark,J. Acoust. Soc. Am. 81(4):952 (1987).

    Article  Google Scholar 

  21. R. T. Smith, R. Stern, and R. W. B. Stephens,J. Acoustic Soc. Am. 40(5):1002 (1966).

    Article  Google Scholar 

  22. H. M. Frost,Physical Acoustics, Vol. XIV (Academic Press, New York, 1979), p. 179.

    Google Scholar 

  23. R. B. Thompson,Physical Acoustics, Vol. XIX (Academic Press, New York, 1988), p. 157.

    Google Scholar 

  24. R. B. Thompson,IEEE Trans. Sonics Ultrasonics SU-25(1):7 (1978).

    Article  Google Scholar 

  25. I. V. Il'in and A. V. Kharitonov,Sov. J. NDT 16:549 (1980).

    Google Scholar 

  26. A. Wilbrand, inRev. Prog. Quant. Nondest Eval., Vol. 7, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), p. 671.

    Google Scholar 

  27. H. Kwun,J. Appl. Phys. 57(5):1555 (1985).

    Article  Google Scholar 

  28. M. Namkung, D. Utrata, S. G. Allison, and J. S. Heyman, inReview of Progress in Quantitative NDE, Vol. 5B, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1986), p. 1489.

    Google Scholar 

  29. C. M. Fortunko, G. L. Peterson, B. B. Chick, M. C. Renken, and A. L. Preis,Rev. Sci. Instr. 63:3477 (1992).

    Article  Google Scholar 

  30. A. V. Clark, C. M. Fortunko, M. G. Lozev, S. R. Schaps, and M. C. Renken,Res. Nondestr. Eval. 4(3):165 (1992).

    Google Scholar 

  31. A. V. Clark and S. R. Schaps, Acoustoelastic Determination of Residual Stress by Measurement of Resonance Peaks and Phase Shifts, manuscript in preparation.

  32. M. Hirao, H. Fukuoka, and Y. Murakami,Res. Nondestr. Eval. 4(3):127 (1992).

    Google Scholar 

  33. A. V. Clark and Y. Berlinsky,Res. Nondestr. Eval. 4:79 (1992).

    Google Scholar 

  34. R. E. Schramm, A. V. Clark, D. V. Mitrakovic, S. R. Schaps, and T. J. McGuire, Residual Stress Detection in Railroad Wheels: An Ultrasonic System Using EMATs, NISTIR No. 3968, Nat. Inst. of Standards and Technology, Gaithersburg, MD (1991).

    Google Scholar 

  35. Y. Beers,Introduction to the Theory of Error, Sec. V.B (Addison-Wesley, Reading, MA 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution of the National Institute of Standards and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, A.V., Fuchs, P. & Schaps, S.R. Fatigue load monitoring in steel bridges with Rayleigh Waves. J Nondestruct Eval 14, 83–98 (1995). https://doi.org/10.1007/BF01183114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183114

Key words

Navigation