Abstract
The purpose of this note is to give further generalizations of the Ky Fan minimax inequality by relaxing the compactness and convexity of sets and the quasi-concavity of the functional and to show that our minimax inequalities are equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz (FKKM) theorem and a modified FKKM theorem given in this note.
This is a preview of subscription content, access via your institution.
References
Allen G (1977) Variational inequalities, complementarity problems, and duality theorems. J Math Anal Appl 58:1–10
Aubin JP (1979) Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam
Aubin JP, Ekeland I (1984) Applied Nonlinear Analysis. Wiley, New York
Ben-El-Mechaickh H, Deguire P, Granas A (1982) Points fixes et coincidences pour les applications multivoques (applications de Ky Fan). C R Acad Sci Paris Sér I Math 295:337–340
Ben-El-Mechaickh H, Deguire P, Granas A (1982) Points fixes et coincidences pour les fonctions multivoques II (applications de type ϕ et ϕ*). C R Acad Sci Paris Sér I Math 295:381–384
Border KC (1985) Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University press, Cambridge
Fan K (1969) Extensions of two fixed point theorems of F. E. Browder. Math Z 112:234–240
Fan K (1972) A minimax inequality and application. In: Inequalities, vol 3 (Shisha O., ed). Academic Press, New York, pp 103–113
Fan K (1979) Fixed-point and related theorems for non-compact sets. In: Game Theory and Related Topics (Moeschlin O, Pallaschke D, eds). North-Holland, Amsterdam, pp 151–156
Fan K (1984) Some properties of convex sets related to fixed points theorems. Math Ann 266:519–537
Hartman PT, Stampacchia G (1966) On some nonlinear ecliptic differential functional equations. Acta Math 115:153–188
Knaster B, Kuratowski C, Mazurkiewicz S (1929) Ein Beweis des Fixpunktsatzes für n-demensionale Simpliexe. Fund Math 14:132–137
Lassonde M (1983) On the use of KKM multifonctions in fixed point theory and related topics. J Math Anal Appl 97:151–201
Mosco U (1976) Implicit variational problems and quasi-variational inequalities. Lecture Notes in Mathematics, vol 543. Springer-Verlag, Berlin, pp 83–156
Tarafdar E (1987) A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. J Math Anal Appl 128:475–479
Tian G (1991) Fixed points theorems for mappings with non-compact and non-convex domains. J Math Anal Appl 158:160–167
Tian G (1992) Existence of equilibrium in abstract economies with discontinuous payoffs and non-compact choice spaces. J Math Econom 21:379–388
Tian G, Zhou J (1991) Quasi-variational inequalities with non-compact sets. J Math Anal Appl 160:583–595
Zhou J, Chen G (1988) Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. J Math Anal Appl 132:213–225
Author information
Authors and Affiliations
Additional information
Communicated by R. Triggiani
Rights and permissions
About this article
Cite this article
Lin, Y.J., Tian, G. Minimax inequalities equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorems. Appl Math Optim 28, 173–179 (1993). https://doi.org/10.1007/BF01182980
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01182980
Key words
- The minimax inequality
- Variational inequalities
- The FKKM theorem
- Noncompact and nonconvex sets
- Equivalence
AMS classification
- 49A29
- 90C33
- 90C50