Skip to main content
Log in

Potential effects of climatic change on some western Canadian forests, based on phenological enhancements to a patch model of forest succession

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We enhanced the forest patch model, Zelig, to explore the implications of 2×CO2 climate change scenarios on several forest regions in British Columbia and Alberta, Canada. In addition to the processes and phenomena commonly represented in individual-based models of forest stand dynamics, we added some species-specific phenology and site-specific frost events. The consideration of bud-break heat sum requirements, growing season limits, and chilling requirements for the induction of dormancy and cold hardiness slightly improved the ability of Zelig to predict the present composition of B.C. forests. Simulations of the predicted effects of future climatic regimes (based on the averaged predictions of four general circulation models) include some major shifts in equilibrial forest composition and productivity. Lowland temperate coastal forests are predicted to be severely stressed because indigenous species will no longer have their winter chilling requirements met. High-elevation coastal forests are expected to increase in productivity, while interior subalpine forests are expected to remain stable in productivity but will gradually be replaced by species currently characteristic of lower elevations. Dry, interior low-elevation forests in southern B.C. are likely to persist relatively unchanged, while wet interior forests are expected to support dramatic increases in yield, primarily by western hemlock. Northern interior sub-boreal forests are likewise expected to increase in productivity through enhanced growth of lodgepole pine. Conversely, the precipitous collapse of spruce stands in the true boreal forests of northeastern B.C. is expected to be associated with reduced productivity as they are replaced by pine species. Boreal-Cordilleran and Moist Boreal Mixedwood forests in Alberta are less likely to undergo compositional change, while becoming somewhat more productive. We believe these model enhancements to be a significant improvement over existing formulations, but the resulting predictions must still be viewed with caution. Model limitations include: (1) the current inability of climate models to predict future variation in monthly temperature and precipitation; (2) sparse information on the phenological behaviour of several important tree species; and (3) a poor understanding of the degree to which growth is constrained by different suboptimal climatic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, M. P.: 1992,Aust. J. Bot. 40, 615–630.

    Google Scholar 

  • Bonan, G.: 1990,Can. J. For. Res. 20, 1077–1088.

    Google Scholar 

  • Becwar, M. R., Rajashekar, C., Jansen Bristow, K. J. and Burke, M. J.: 1981,Plant Physiol. 68, 111–114.

    Google Scholar 

  • Botkin, D. B.: 1993,Forest Dynamics, An Ecological Model. Oxford Univ. Press, Oxford, United Kingdom.

    Google Scholar 

  • Botkin, D. B., Janak, J. F. and Wallis, J. R.: 1972,J. Ecol. 60, 849–872.

    Google Scholar 

  • Cannell, M. G. R. and Smith, R. I.: 1983,J. Appl. Ecol. 20, 951–963.

    Google Scholar 

  • Cannell, M. G. R. and Smith, R. I.: 1986,J. Appl. Ecol. 23, 177–191.

    Google Scholar 

  • Cumming, S. G. and Burton, P. J.: 1993,Environ. Software 8, 219–230.

    Google Scholar 

  • Fuchigami, L. H., Weiser, C. J., Kobayashi, K., Timmis, R. and Gusta, L. V.: 1982,In:Plant Cold Hardiness and Freezing Stress, Li, P. H. and Sakai, A., (eds.)Mechanisms and Crop Implications, Volume 2, Academic Press, New York, USA, pp. 93–116.

    Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Rind, D., Russell, G., Lebedeff, S., Reudy, R. and Stone, P.: 1988,J. Geophys. Res. 93, 9341–9364.

    Google Scholar 

  • Keane, R. E., Arno, S. F. and Brown, J. K.: 1990,Ecology 71, 189–203.

    Google Scholar 

  • Kimmins, J. P. and Lavender, D. P.: 1992,Environ. Toxic. and Chem. 11, 1061–1068.

    Google Scholar 

  • Klinka, K., Feller, M. C., Green, R. N., Meidinger, D. V., Pojar, J. and Worrall, J.: 1990,In:Regenerating British Columbia's Forests, Lavender, D. P., Parish, R., Johnson, C. M., Montgomery, G., Vyse, A., Willis, R. A. and Winston, D., (eds.) Univ. of British Columbia Press, Vancouver, Canada, pp. 55–72.

    Google Scholar 

  • Leemans, R. and Cramer, W.: 1990,The IIASA Database for Mean Monthly Values of Temperature, Precipitation, and Cloudiness of a Global Terrestrial Grid. Working Paper WP-90-41, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Manabe, S. and Wetherald, R. T.: 1987,J. Atmos. Sci. 44, 1211–1235.

    Google Scholar 

  • McCreary, D. D., Lavender, D. P. and Herman, R. K.: 1990,Ann. Sci. For. 47, 325–330.

    Google Scholar 

  • Meidinger, D., and Pojar, J.: 1991,Ecosystems of British Columbia. Special Report Series 6, Research Branch, B.C. Ministry of Forests, Victoria, Canada.

    Google Scholar 

  • Mitchell, J. F. B.: 1983,Quart. J. Royal Met. Soc. 109, 113–152.

    Google Scholar 

  • Nelson, E. A. and Lavender, D. P.: 1979,For. Sci. 25, 485–490.

    Google Scholar 

  • Nienstaedt, H.: 1966,For. Sci. 12, 374–383.

    Google Scholar 

  • Nienstaedt, H.: 1967,Silv. Gen. 16, 65–68.

    Google Scholar 

  • Owens, J. N., Molder, M. and Langer, H.: 1977,Can. J. Bot. 55, 2728–2745.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T. and Cramer, W.: 1993,Ecol. Modelling 65, 51–70.

    Google Scholar 

  • Schlesinger, M. and Zhao, Z: 1988,Seasonal Climatic Changes Induced by Doubled CO 2 as Simulated by the OSU Atmospheric GCM/Mixed Layer Ocean Model. Oregon State Univ., Climate Research Institute, Corvallis, USA.

    Google Scholar 

  • Schneider, S. H.: 1989,Global Warming. Sierra Club Books, San Francisco, USA.

    Google Scholar 

  • Shugart, H. H.: 1984,A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. Springer-Verlag, New York, USA

    Google Scholar 

  • Shugart, H. H. and Prentice, I. C.: 1992,A Systems Analysis of the Global Boreal Forest, Shugart, H. H., Leemans, R. and Bonan, G. B., (eds.) Cambridge Univ. Press, Cambridge, United Kingdom, pp. 313–333.

    Google Scholar 

  • Sakai, A.: 1983,Can. J. Bot. 61, 2323–2332.

    Google Scholar 

  • Sakai, A. and Okada, S.: 1971,Silv. Gen. 20, 91–97.

    Google Scholar 

  • Sakai, A. and Weiser, C. J.: 1973,Ecology 54, 118–126.

    Google Scholar 

  • Singh, T. and Wheaton, E. E.: 1991,For. Chron. 67, 342–348.

    Google Scholar 

  • Smith, T. M., Leemans, R. and Shugart, H. H.: 1992,Clim. Change 21, 367–384.

    Google Scholar 

  • Smith, T. M. and Urban, D. L.: 1988,Vegetatio 74, 143–150.

    Google Scholar 

  • Solomon, A. M., Tharp, M. L., West, D. C., Taylor, G. E., Webb, J. M. and Trimble, J. C.: 1984,Response of Unmanaged Forests to CO 2-Induced Climate Change. Available Information, Initial Tests, and Data Requirements. U.S. Dept. of Energy, Washington, USA.

    Google Scholar 

  • Steinhoff, R. J. and Hoff, R. J.: 1972,Chilling Requirements for Breaking Dormancy of Western White Pine Seedlings. U.S. For. Serv. Res. Note INT-153. Intermountain Forest and Range Experiment Station, Ogden, USA.

    Google Scholar 

  • Sykes, M. T. and Prentice, I.C.: 1995,Water, Air, Soil Pallut. 82, 413–426.

    Google Scholar 

  • Thomson, A. J. and Moncrieff, S. M.: 1982,Can. J. For. Res. 12, 448–452.

    Google Scholar 

  • Urban, D. L.: 1990,A Versatile Model to Simulate Forest Pattern, A User's Guide to ZELIG 1.0. Univ. of Virginia, Dept. of Environmental Sciences, Charlottesville, USA.

    Google Scholar 

  • Urban, D. L., Harmon, M. R. and Halpern, C. B.: 1993,Clim. Change 23, 247–266.

    Google Scholar 

  • van den Driessche, R.: 1975,Flushing Response of Douglas-fir Buds to Chilling and to Different Air Temperatures After Chilling. B.C. Forest Service Research Note #21, Victoria, Canada.

  • Worrall, J.: 1983,Silv. Gen. 32, 203–209.

    Google Scholar 

  • Young, J. A. and Young, C. G.: 1992,Seeds of Woody Plants in North America. Dioscorides Press, Portland, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, P.J., Cumming, S.G. Potential effects of climatic change on some western Canadian forests, based on phenological enhancements to a patch model of forest succession. Water Air Soil Pollut 82, 401–414 (1995). https://doi.org/10.1007/BF01182850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182850

Keywords

Navigation