Acta Mechanica

, Volume 93, Issue 1–4, pp 1–11 | Cite as

Exact nonlinear travelling hydromagnetic wave solutions

  • M. Venkatachalappa
  • N. Rudraiah
  • P. L. Sachdev
Contributed Papers

Summary

Exact travelling wave solutions for hydromagnetic waves in an exponentially stratified incompressible medium are obtained. With the help of two integrals it becomes possible to reduce the system of seven nonlinear PDE's to a second order nonlinear ODE which describes an one dimensional harmonic oscillator with a nonlinear friction term. This equation is studied in detail in the phase plane. The travelling waves are periodic only when they propagate either horizontally or vertically. The reduced second order nonlinear differential equation describing the travelling waves in inhomogeneous conducting media has rather ubiquitous nature in that it also appears in other geophysical systems such as internal waves, Rossby waves and topographic Rossby waves in the ocean.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barenblatt, G. I.: Similarity, self-similarity and intermediate asymptotics. New York: Consultants Bureau 1979.Google Scholar
  2. [2]
    Courant, R., Friedrichs, K. O.: Supersonic flow and shock waves. New York: Interscience 1948.Google Scholar
  3. [3]
    Schindler, G. M.: Simple waves in multidimensional gas flow. SIAM J. Appl. Math.19, 390–407 (1970).Google Scholar
  4. [4]
    Kalinowski, M. W., Grundland, A.: Simple waves for equation of potential, nonstationary flow of compressible gas. J. Math. Phys.27, 1906–1915 (1986).Google Scholar
  5. [5]
    Acheson, D. J.: The critical level for hydromagnetic waves in a rotating fluid. J. Fluid Mech.53, 401–415 (1972).Google Scholar
  6. [6]
    Rudraiah, N., Venkatachalappa, M.: Propagation of internal gravity waves in perfectly conducting fluids with shear flow, rotation and transverse magnetic field. J. Fluid Mech.52, 193–206 (1972).Google Scholar
  7. [7]
    Rudraiah, N., Venkatachalappa, M.: Propagation of Alfvén-gravitational waves in a stratified perfectly conducting flow with transverse magnetic field. J. Fluid Mech.54, 209–215 (1972).Google Scholar
  8. [8]
    Rudraiah, N., Venkatachalappa, M.: Momentum transport by gravity waves in a perfectly conducting shear flow. J. Fluid Mech.54, 217–240 (1972).Google Scholar
  9. [9]
    Rudraiah, N., Venkatachalappa, M.: Effect of Ohmic dissipation on internal Alfvén-gravity waves in a conducting shear flow. J. Fluid Mech.62, 705–726 (1974).Google Scholar
  10. [10]
    Rudraiah, N., Venkatachalappa, M.: Propagation of hydromagnetic waves in a perfectly conducting nonisothermal atmosphere in the presence of rotation and variable magnetic field. J. Fluid Mech.89, 785–792 (1979).Google Scholar
  11. [11]
    Grimshaw, R.: Internal gravity waves: critical layer absorption in a rotating fluid. J. Fluid Mech.70, 287–304 (1975).Google Scholar
  12. [12]
    Rudraiah, N., Venkatachalappa, M., Kandaswamy, P.: Propagation of internal Alfvén-acoustic-gravity waves in a perfectly conducting isothermal compressible fluid. J. Fluid Mech.80, 223–236 (1977).Google Scholar
  13. [13]
    Rudraiah, N., Venkatachalappa, M., Kandaswamy, P.: Propagation and reflection of Alfvén-acoustic-gravity waves in an isothermal compressible fluid. J. Fluid Mech.80, 223–236 (1977).Google Scholar
  14. [14]
    Seshadri, V. S., Sachdev, P. L.: Quasi-simple wave solutions for acoustic gravity waves. Phys. Fluids20, 888–894 (1977).Google Scholar
  15. [15]
    Adam, A.: Solar magnetoatmospheric waves—a simplified mathematical treatment. Astron. Astrophys.60, 171–179 (1977).Google Scholar
  16. [16]
    Nye, A. H., Thomas, J. H.: Solar magneto-atmospheric waves. I. An exact solution for a horizontal magnetic field. Astrophys. J.204, 573–581 (1976).Google Scholar
  17. [17]
    Nye, A. H., Thomas, J. H.: Solar magneto-atmospheric waves. II. A model for running Penumbral waves. Astrophys. J.204, 582–588 (1976).Google Scholar
  18. [18]
    Yu, C. P.: Magneto- atmospheric waves in a horizontal stratified conducting medium. Phys. Fluids8, 650–656 (1965).Google Scholar
  19. [19]
    Talwar, S. P.: Stability of a conducting rotating fluid of variable density. J. Fluid Mech.9, 581–592 (1960).Google Scholar
  20. [20]
    Odulo, Al. B., Odulo, An. B., Chusov, M. A.: On one class of nonlinear stationary waves in the ocean. Izvestiya, Atmosph. Ocean. Phys.13, 584–587 (1977).Google Scholar
  21. [21]
    Cole, J. D.: Perturbation methods in applied mathematics. Blaisdell Publishing Company 1968.Google Scholar
  22. [22]
    Sachdev, P. L., Gupta, N.: Exact travelling-wave solutions for model geophysical systems. Studies Appl. Math.82, 267–289 (1990).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Venkatachalappa
    • 1
  • N. Rudraiah
    • 2
  • P. L. Sachdev
    • 3
  1. 1.UGC-DSA Centre in Fluid Mechanics, Department of Mathematics, Central CollegeBangalore UniversityBangaloreIndia
  2. 2.Vice-ChancellorGulbarga UniversityGulbargaIndia
  3. 3.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations