Skip to main content
Log in

Analytical approach to estimating the dimension of attractors

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

A mathematically rigorous procedure to estimate the Hausdorff dimension of the attractor is given. The method is based on invoking the Kaplan-Yorke-type estimate, through extending the argument of Constantin, Foias, and Temam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), 1–27.

    Google Scholar 

  2. P. Constantin, C. Foias, and R. Temam, Attractors Representing Turbulent Flows, Mem. Amer. Math. Soc., Vol. 53, No. 314, American Mathematical Society, Providence, RI, 1985

    Google Scholar 

  3. A. Eden, C. Foias, and R. Temam, Local and global Lyapunov exponents, J. Dyn. Differential Equations 3 (1991), 133–177.

    Google Scholar 

  4. J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica 7D (1983), 153–180.

    Google Scholar 

  5. A. C. Fowler, J. D. Gibbon, and M. J. McGuinness, The complex Lorenz equations, Physica 4D (1982), 139–163.

    Google Scholar 

  6. J. D. Gibbon and M. J. McGuinness, The real and complex Lorenz equations in rotating fluids and lasers, Physica 5D (1982), 108–122.

    Google Scholar 

  7. P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica 9D (1983), 189–208.

    Google Scholar 

  8. P. Grassberger and I. Procaccia, Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Physica 13D (1984), 34–54.

    Google Scholar 

  9. Y. Hattori, N. Ishimura, I. Ohnishi, and M. Umeki, Dimension estimate of the global attractor for forced oscillation systems, Japan J. Indust. Appl. Math. 10 (1993), 351–366.

    Google Scholar 

  10. N. Ishimura and M. Nakamura, On the simplified magnetic Bénard problem—dimension estimate of the attractor, Adv. Math. Sci. Appl. 4 (1994), 241–247.

    Google Scholar 

  11. J. Kaplan and J. A. Yorke, Chaotic behavior of multidimensional difference equations, in Functional Difference Equations and Approximation of Fixed Points, Lecture Notes in Mathematics, Vol. 730, Springer-Verlag, Berlin, 1979, pp. 204–227.

    Google Scholar 

  12. F. Ledrappier, Some relations between dimension and Lyapunov exponents, Comm. Math. Phys. 81 (1981), 229–238.

    Google Scholar 

  13. E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20 (1963), 130–141.

    Google Scholar 

  14. M. Sano and Y. Sawada, Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett. 55 (1985), 1082–1085.

    Google Scholar 

  15. I. Shimada and T. Nagashima, A numerical approach to ergodic problems of dissipative dynamical systems, Progr. Theoret. Phys. 61 (1979), 1605–1616.

    Google Scholar 

  16. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  17. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica 16D (1985), 285–317.

    Google Scholar 

  18. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2 (1982), 109–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Temam

This work is partially supported by Grant-in-Aid for Scientific Research (Nos. 04305031, 04554001, 04640209, and 05740082), Japan Ministry of Education, Science, and Culture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakamada, T., Imai, H. & Ishimura, N. Analytical approach to estimating the dimension of attractors. Appl Math Optim 34, 29–36 (1996). https://doi.org/10.1007/BF01182471

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182471

Key words

AMS classification

Navigation