Skip to main content
Log in

Biaxial bending stresses and stress factors in trapezoidal and elliptical cross-sectional curved beams

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper deals with the general case of biaxial bending of a curved beam in space whose centerline is circularly curved. Stress equations at any point in the cross-section of the beam have been derived by using Winkler's method. Neutral planes were established and stress factors were found and tabulated for variable thicknesses, widths, and ratios of (R 2/R 1). Numerical examples for several cases are solved and are demonstrated in graphical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

semi-major axis of an ellipse

a 1 :

distance from the centroidal point, along they axis to the interior fiber

a 2 :

distance from the centroidal point, along they axis to the exterior fiber

A :

cross sectional area

A 1 :

=a 2+a 1

A 3 :

=a 2 3+a 1 3

A 4 :

=a 2 4a 1 4

b :

semi-minor axis of an ellipse

b 2 :

exterior fiber width

b 1 :

interior fiber width

b :

=b 2b 1

F :

stress correction factor

h :

thickness of the beam

H :

\(H = \left( {\frac{{ba_2 }}{h} + b_1 } \right)\)

I y :

moment of inertia abouty-axis

I z :

moment of inertia aboutz-axis

I yz :

product of inertia

J y :

polar moment of inertia abouty-axis

J z :

polar moment of inertia aboutz-axis

J yz :

polar product of inertia

M y :

bending moment abouty-axis

M z :

bending moment aboutz-axis

R :

radius of curvature of the centroidal axis in the unloaded condition

R 1 :

=R 0a 1

R 2 :

=R 0+a 2

x z :

fiber width parallel toz-axis

y :

fiber distance from centroidal point, along they-axis

z :

distance of point from Ccentroidal point, along thez-axis

σ E :

bending stress, elementary theory

σ W :

bending stress, Winkler's theory

References

  1. Winkler, E.: Formänderung und Festigkeit gekrümmter Körper, insbesondere der Ringe. Zivilingenieur, N.S.4, 232–246 (1858).

    Google Scholar 

  2. Golovin, H.: одна изь задчь статики упругаро тбла практическаго технолгическаго института санктпетербургскаго, pp. 373–410, 1881.

  3. Ribiere, M. C.: Sur l'équilibre d'élasticité des voutes en arc de cercle. Compt. Rend.108, 561–563 (1889); and: Sur les voûtes en arc de cercler encastre es aux naissances. Compt. Rend.132, 315–317 (1901).

    Google Scholar 

  4. Billewicz, W.: Analysis of stresses in circular elastic rings under the action of body forces and external loading. Doctorate thesis, Univ. of Michigan, 1932.

  5. Holland, M.: Pure bending of beams having initial curvature. The Aeronautical Journal78 (768), 570–573 (1974).

    Google Scholar 

  6. Anatanaras, D. G., Tzivanidis, G. I.: Pure bending of anI-section beam having initial curviture. The Aeronautical Journal82 (443), 523–526 (1978).

    Google Scholar 

  7. Qassem, W., Raftopoulos, D. D.: Stresses and stress factors in curved beams having initial curvature. ESP 22/85017, pp. 1–10, Oct. 7–9, 1985.

  8. Bresler, B.: Design criteria for reinforced columns under axial load and biaxial bending. ACI Proc.57, 483–490 (1960).

    Google Scholar 

  9. Chen, W. F., Shoraka, M. T.: Tangent stiffness method for biaxial bending of reinforced concrete columns. International Association for Bridge and Structural Engineering35-I, 1975.

  10. Meek, J. L.: Ultimate strength of columns with biaxially eccentric loads. ACI J Proc.60, (8), 1053–1064 (1963).

    Google Scholar 

  11. Pannel, F. N.: Failure surface for members in compression and biaxial bending. ACI J. Proc.61 (1), 129–140 (1963).

    Google Scholar 

  12. Rammurthy, L. N.: Investigation of the ultimate strength of square and rectangular columns under biaxial eccentric loads. ACI Publication SP-13, pp. 263–298, 1966.

    Google Scholar 

  13. Mattock, A. H., Kriz, L. B., Hognestad, E.: Rectangular concrete stress distribution on ultimate strength design. ACI J. Proc.57, 875–928 (1961).

    Google Scholar 

  14. Au, T.: Ultimate strength of rectangular concrete member subjected to unsymmetrical bending. ACI Proc.54, 657–674 (1958).

    Google Scholar 

  15. Brettle, H. J., Warner, F. R.: Ultimate strength design of rectangular reinforced concrete sections in compression and biaxial bending. Civil Engineering Transactions, pp. 101–110. Australia: Institute of Engineers April 1968.

    Google Scholar 

  16. Farah, A., Huggins, M. W.: Analysis of reinforced concrete columns subjected to longitudinal load and biaxial bending. ACI J. Proc.66 (7), 569–575 (1969).

    Google Scholar 

  17. Furlong, R. W.: Ultimate strength of square columns under biaxially eccentric loads. ACI J. Proc.32 (9), 1129–1140 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 21 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raftopoulos, D.D., Qassem, W. Biaxial bending stresses and stress factors in trapezoidal and elliptical cross-sectional curved beams. Acta Mechanica 68, 71–94 (1987). https://doi.org/10.1007/BF01182017

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182017

Keywords

Navigation