Skip to main content
Log in

Lagrange identification of absolutely unstable regimes in wakes

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The development of a pulsewise perturbation in a two-dimensional incompressible wake is simulatd numerically using a vortex dynamics method. The main attraction of using vortex methods lies in their Lagrangian nature, which in inviscid flows preserves the identity of rotational fluid elements and thereby allows for the tracking of individual vortex lines or tubes. Because of the non-linearity of this novel approach to identify regions of local absolute and local converctive instability, the analysis is not restricted tio small amplitudes. Moreover the basic state does not have to be locally parallel, and the method is easily applicable to unsteady flows. A comparison of the resulting stability features of the symmetric wake profiles as determined by the numerical simulation with the prediction of the Orr-Sommerfeld analysis confirms the validity of the linear, local stability theory. An extension of the vortex dynamics method to rotational flow fields in which the effects of viscosity become important is enabled by the particle strength exchange scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bers, A.: Linear weves and instabolities. In: Physique des plasmas (DeWitt, C., Peyraud, J., (eds.), pp. 117–215. New York: Gordon and Breach 1975).

    Google Scholar 

  2. Brevdo, L.: Three-dimensional absolute and convective instabilities and spatially amplifying waves in parallel shear flow. ZAMP42, 911–942 (1991).

    Google Scholar 

  3. Briggs, R. J.: Electron-stream interaction with plasmas. Res. Monogr.29. Cambridge: MIT Press 1964.

    Google Scholar 

  4. Degond, P., Mas-Gallic, S.: The weighted particle method for convection-diffusion equations. Part I: The case of an isotropic viscosity. Part II: The anisotropic case. Math. Comp.53, 485–526 (1989).

    Google Scholar 

  5. Koch, W.: Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vibr.99, 53–83 (1985).

    Google Scholar 

  6. Leonard, A.: Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech.17, 523–559 (1985).

    Google Scholar 

  7. Leonard, A.: Vortex methods for flow simulation. J. Comp. Phys.37, 289–335 (1980).

    Google Scholar 

  8. Mas-Gallic, S.: Contribution à l'analyse numérique des èthodes particulaires. Thèse d'Etat, Université Paris VI., 1987.

  9. Meiburg, E.: Three-dimensional vortex dynamics simulations. In: Fluid vortices (Green, S. I., ed.), pp. 651–685. Dordrecht.: Kluwer 1995.

    Google Scholar 

  10. Monkewitz, P. A.: The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids31, 999–1006 (1988).

    Google Scholar 

  11. Nakamura, Y., Leonard, A., Spalart, P.R.: Vortex simulation of an inviscid shear layer. AIAA Paper 82-0948 (1982).

  12. Oertel jr., H., Delfs, J.: Mathematische Analyse der Bereiche reibungsbehafteter Strömungen. ZAMM75, 491–505 (1995).

    Google Scholar 

  13. Oertel jr., H.: Bereiche der reibungsbehafteten Strömung. Z. Flugwiss. Weltraumforsch.19, 119–128 (1995).

    Google Scholar 

  14. Oertel jr., H.: Wakes behind blunt bodies. Annu. Rev. Fluid Mech.22, 539–564 (1990).

    Google Scholar 

  15. Winckelmans, G. S.: Topics in vortex methods for the simulation of three- and two-dimensional incompressible unsteady flows. Ph. D. Thesis, California Institute of Technology, 1989.

  16. Winckelmans, G. S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comp. Phys.109, 247–273 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delffs, J., Ehrhard, J., Meiburg, E. et al. Lagrange identification of absolutely unstable regimes in wakes. Acta Mechanica 122, 89–97 (1997). https://doi.org/10.1007/BF01181992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181992

Keywords

Navigation