Skip to main content
Log in

Laminar boundary-layer separation over a circular cylinder in uniform shear flow

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

By appealing to the classical boundary-layer theory, the present paper investigates the effect of the freestream shear on the separation of the laminar boundary layer around a circular cylinder. It is shown that on the side of the cylinder with faster freestream velocity the location of the separation point (point of vanishing wall shear) is virtually unaffected by the freestream shear, while on the other side of the cylinder a critical shear rate is observed. Below this critical value, separation occurs typically at the rear surface of the cylinder and is found to shift towards the downstream direction with increasing freestream shear. Above the critical shear rate, the boundary layer separates from the windward side of the cylinder. Further increase of the freestream shear then causes the separation point to move towards the upstream direction. The present findings may have important implication on the issue regarding to the orientation of the lift force exerting on the cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Proc. 3rd Int. Math. Congress, pp. 484–491. Heidelberg 1904.

  2. Schlichting, H.: Boundary-layer theory, 7th ed. New York: McGraw-Hill 1979.

    Google Scholar 

  3. Zdravkovich, M. M.: Flow around circular cylinders. Oxford: Oxford University Press 1996.

    Google Scholar 

  4. Bretherton, F. P.: Slow viscous motion round a cylinder in a simple shear. J. Fluid Mech.12, 591–613 (1962).

    Google Scholar 

  5. Saffman, P. G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech.22, 385–400 (1965).

    Google Scholar 

  6. Jordan, S. K., Fromm, J. E.: Laminar flow past a circle in a shear flow. Phys. Fluids15, 972–976 (1972).

    Google Scholar 

  7. Nakabayashi, K., Yoshida, N., Aoi, T.: Numerical analysis for viscous shear flows past a circular cylinder at intermediate Reynolds numbers. JSME Int. J. Ser. B36, 34–41 (1993).

    Google Scholar 

  8. Maull, D. J., Young, R. A.: Vortex shedding from bluff bodies in a shear flow. J. Fluid Mech.60, 401–409 (1973).

    Google Scholar 

  9. Kossack, C. A., Acrivos, A.: Steady simple shear flow past a circular cylinder at moderate Reynolds numbers: a numerical solution. J Fluid Mech.66, 353–376 (1974).

    Google Scholar 

  10. Kiya, M., Tamura, H., Arie, M.: Vortex shedding from a circular cylinder in moderte Reynolds number shear flow. J. Fluid Mech.101, 721–735 (1980).

    Google Scholar 

  11. Kwon, T. S., Sung, H. J., Hyun, J. M.: Experimental investigation of uniform-shear flow past a circular cylinder. Trans. ASME J. Fluids Eng.114, 457–460 (1992).

    Google Scholar 

  12. Chew, Y. T., Luo, S. C., Cheng, M.: Numerical study of a linear shear flow past a rotating cylinder. J. Wind Engineering and Industrial Aerodynamics66, 107–125 (1997).

    Google Scholar 

  13. Milne-Thomson, L. M.: Theoretical aerodynamics, 4th ed., pp. 93–95. New York: Dover 1973.

    Google Scholar 

  14. Anderson, J. D., Jr.: Computational fluid dynamics. New York: McGraw-Hill 1995.

    Google Scholar 

  15. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical recipes, 2nd ed., pp. 42–43. Cambridge: Cambridge University Press 1992.

    Google Scholar 

  16. Goldstein, S.: On laminar boundary layer flow near a position of separation. Q. J. Mech. Appl. Math.1, 43–69 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Chen, C.F. Laminar boundary-layer separation over a circular cylinder in uniform shear flow. Acta Mechanica 144, 71–82 (2000). https://doi.org/10.1007/BF01181829

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181829

Keywords

Navigation