Skip to main content
Log in

Formation of synapses between basal forebrain afferents and cerebral cortex neurons: an electron microscopic study in organotypic slice cultures

  • Published:
Journal of Neurocytology

Summary

Co-cultures of rat basal forebrain and cerebral cortex were maintained from 1 to 5 weeksin vitro with serum-free defined medium. The formation of synaptic connections between basal forebrain afferent fibres and cortical neurons was studied by specific labelling with three staining techniques, including (i) neuronal tract tracing with the fluorescent dye 1,1′-dioctodecyl-3,3,3′3’-tetramethylindocarbocyanine perchlorate, (ii) acetylcholinesterase histochemistry, and (iii) choline acetyltransferase immunocytochemistry.

Both basal forebrain and cerebral cortex tissue displayed organotypic characteristics in culture. Cerebral cortex revealed a dense innervation by axonal projections from the basal forebrain. All three labelling techniques produced similar results at the light microscopic level, with densest innervation located in the marginal zone. At the fine structural level, the 1,1′-dioctodecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate-, acetylcholinesterase- and choline acetyltransferasestained basal forebrain afferents all revealed a number of synaptic contacts with cortical neurons. The contacts displayed consistent synaptic features, including presynaptic accumulation of small round vesicles, cleft widening, and postsynaptic densities forming symmetric synapses. These morphological characteristics of connections formedin vitro are similar to basal forebrain cholinergic projections to cerebral cortex in normal brain. Based on these results, this tissue culture model appears to be an useful tool for investigations of the development of cholinergic innervation of cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annis, C. M., Edmond, J. &Robertson, R. T. (1990) A chemically-defined medium for organotypic slice cultures.Journal of Neuroscience Methods 32, 63–70.

    PubMed  Google Scholar 

  • Aoki, C. &Kabak, S. (1992) Cholinergic terminals in the cat visual cortex: ultrastructural basis for interaction with glutamate-immunoreactive neurons and other cells.Visual Neuroscience 8, 177–91.

    PubMed  Google Scholar 

  • Appleyard, M. (1992) Secreted acetylcholinesterase: non-classical aspects of a classical enzyme.Trends in Neuroscience 15, 485–90.

    Google Scholar 

  • Blue, M. E. &Parnavelas, J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis.Journal of Neurocytology 12, 599–616.

    PubMed  Google Scholar 

  • Bolz, J., Novak, N., Götz, M. &Bonhoeffer, T. (1990) Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex.Nature 346, 359–62.

    PubMed  Google Scholar 

  • Caeser, M., Bonhoeffer, T. &Bolz, J. (1989) Cellular organization and development of slice cultures from rat visual cortex.Experimental Brain Research 77, 234–44.

    Google Scholar 

  • Calarco, C. A., Kageyama, G. H., Yu, J. &Robertson, R. T. (1993) Development of basal forebrain projections to cerebral cortex: Dil studies in rats.Anatomical Record 230, 41 (Abstract).

    Google Scholar 

  • Colonnier, M. (1968) Synaptic patterns of different cell types in the different laminae of the cat visual cortex. An electron microscope study.Brain Research 9, 268–87.

    PubMed  Google Scholar 

  • De Jong, B. M., Ruijter, J. M. &Romijn, H. J. (1988) Cytoarchitecture in cultured rat neocortex explants.International Journal of Developmental Neuroscience 6, 327–39.

    PubMed  Google Scholar 

  • De Lima, A. D. &Singer, W. (1986) Cholinergic innervation of the cat striate cortex: A choline acetyltranferase immunocytochemical analysis.Journal of Comparative Neurology 25, 324–38.

    Google Scholar 

  • Del Rio, J. A., Heimrich, B., Soriano, E., Schwegler, H. &Frotscher, M. (1991) Proliferation and differentiation of glial fibrillary acid protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus.Neuroscience 43, 335–347.

    PubMed  Google Scholar 

  • Dinopoulos, A., Parnavelas, J. G. &Eckenstein, F. (1986) Morphological characterization of cholinergic neurons in the horizontal limb of the diagonal band of Broca in the basal forebrain of the rat.Journal of Neurocytology 15, 619–28.

    PubMed  Google Scholar 

  • Dinopoulos, A., Parnavelas, J. G., Uylings, H. B. M. &Van Eden, C. G. (1988) The morphology of basal forebrain neurons in the rat: a Golgi study.Journal of Comparative Neurology 272, 461–74.

    PubMed  Google Scholar 

  • Dinopoulos, A., Eadie, L. A., Dori, I. &Parnavelas, J. G. (1989) The development of basal forebrain projections to rat visual cortex.Experimental Brain Research 76, 563–71.

    Google Scholar 

  • Dinopoulos, A., Uylings, H. B. M. &Parnavelas, J. G. (1992) The development of neurons in the nuclei of the horizontal and vertical limb of the diagonal band of Broca of the rat: a qualitative and quantitative analysis of Golgi preparations.Developmental Brain Research 65, 65–74.

    PubMed  Google Scholar 

  • Distler, P. G. &Robertson, R. T. (1992a) Development of AChE-positive neuronal projections from basal forebrain to cerebral cortex in organotypic tissue slice cultures.Developmental Brain Research 67, 181–96.

    PubMed  Google Scholar 

  • Distler, P. G. &Robertson, R. T. (1992b) Development of synaptic contacts between neurons of basal forebrain and cerebral cortex in organotypic tissue slice cultures.Society for Neuroscience Abstracts 18, 112.

    Google Scholar 

  • Dori, I. &Parnavelas, J. G. (1989) The cholinergic innervation of the rat cerebral cortex shows two distinct phases in development.Experimental Brain Research 76, 417–23.

    Google Scholar 

  • Eckenstein, F. &Sofroniew, M. V. (1983) Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase.Journal of Neuroscience 3, 2286–91.

    PubMed  Google Scholar 

  • Eckenstein, F., Baughman, R. W. &Quinn, J. (1988) An anatomical study of cholinergic innervation of rat cerebral cortex.Neuroscience 25, 457–74.

    PubMed  Google Scholar 

  • Engel, A. K., Tetzlaff, W. &Kreutzberg, G. W. (1988) Axonal transport of 16S acetylcholinesterase is increased in regenerating peripheral nerve in guinea-pig, but not in rat.Neuroscience 24, 729–38.

    PubMed  Google Scholar 

  • Fibiger, H. C. (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain.Brain Research Reviews 4, 327–88.

    Google Scholar 

  • Freund, T. F. &Antal, M. (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus.Nature 336, 170–3.

    PubMed  Google Scholar 

  • Frotscher, M. &Gähwiler, B. H. (1988) Synaptic organization of intracellularly stained CA3 pyramidal neurons in slice cultures of rat hippocampus.Neuroscience 24, 541–51.

    PubMed  Google Scholar 

  • Gähwiler, B. H. &Brown, D. A. (1985) Functional innervation of cultured hippocampal neurons by cholinergic afferents from co-cultured hippocampal expiants.Nature 313, 577–9.

    PubMed  Google Scholar 

  • Godement, P., Vanselow, J., Thanos, S. &Bonhoeffer, F. (1987) A study in developing visual systems with a new method of staining neurons and their processes in fixed tissue.Development 101, 697–713.

    PubMed  Google Scholar 

  • Götz, M. &Bolz, J. (1992) Formation and preservation of cortical layers in slice cultures.Journal of Neurobiology 23, 783–802.

    PubMed  Google Scholar 

  • Gould, E., Woolf, N. J. &Butcher, L. (1991) Postnatal development of cholinergic neurons in the rat: I. Forebrain.Brain Research Bulletin 27, 767–89.

    PubMed  Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses in the cerebral cortex: an electron microscopic study.Journal of Anatomy 93, 420–33.

    PubMed  Google Scholar 

  • Happe, H. K. &Murrin, L. C. (1992) Development of high-affinity choline transport sites in rat forebrain: A quantitative autoradiography study with [3H] Hemicholinium-3.Journal of Comparative Neurology 321, 591–611.

    PubMed  Google Scholar 

  • Heimrich, B. &Frotscher, M. (1990) Differentiation of dentate granular cells in slice cultures of rat hippocampus: a Golgi/electron microscopic study.Brain Research 538, 263–8.

    Google Scholar 

  • Henderson, Z. (1989) Acetylcholinesterase on the dendrites of central cholinergic neurons: an electron microscopical study in the ferret.Neuroscience 28, 95–108.

    PubMed  Google Scholar 

  • Henderson, Z. (1991) Early development of the nucleus basalis-cortical projection but late expression of its cholinergic function.Neuroscience 44, 311–24.

    PubMed  Google Scholar 

  • Höhmann, C. F., Kwiterovich, K. K., Oster-Granite, M. L. &Coyle, J. T. (1991) Newborn basal forebrain lesions disrupt cortical cytodifferentiation as visualized by rapid Golgi staining.Cerebral Cortex 1, 143–57.

    PubMed  Google Scholar 

  • Houser, C. R., Crawford, G. D., Salvaterra, P. M. &Vaughn, J. E. (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.Journal of Comparative Neurology 234, 17–34.

    PubMed  Google Scholar 

  • Houser, C. R. (1990) Cholinergic synapses in the central nervous system: studies of the immunocytochemical localization of choline acetyltransferase.Journal of Electron Microscopy Techniques 1, 2–19.

    Google Scholar 

  • Hsiang, J., Price, S. D., Heller, A., Hoffmann, P. C. &Wainer, B. H. (1988) Ultrastructural evidence for hippocampal target-cell mediated trophic effects on septal cholinergic neurons in reaggregating cell cultures.Neuroscience 26, 417–31.

    PubMed  Google Scholar 

  • Itarat, W. &Jones, D. G. (1992) Perforated synapses are present during synaptogenesis in rat neocortex.Synapse 11, 279–86.

    PubMed  Google Scholar 

  • Kiss, J. &Patel, A. J. (1992) Development of the cholinergic fibres innervating the cerebral cortex of the rat.International Journal of Developmental Neuroscience 10, 153–70.

    PubMed  Google Scholar 

  • Levey, A. I., Wainer, B. H., Mufson, E. J. &Mesulam, M.-M. (1983) Co-localization of acetylcholinesterase and choline acetyltransferase in rat cerebrum.Neuroscience 9, 9–22.

    PubMed  Google Scholar 

  • Levey, A. I., Wainer, B. H., Rye, D. B., Mufson, E. J. &Mesulam, M.-M. (1984) Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons.Neuroscience 13, 341–53.

    PubMed  Google Scholar 

  • Lucas, C. A. &Kreutzberg, G. W. (1985) Regulation of acetylcholinesterase secretion from neuronal cell cultures. 1. Actions of nerve growth factor, cytoskeletal inhibitors and tunicamycin.Neuroscience 14, 349–60.

    PubMed  Google Scholar 

  • Lysakowski, A., Wainer, B. H., Bruce, G. &Hersh, L. B. (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex.Neuroscience 28, 291–336.

    PubMed  Google Scholar 

  • Maranto, A. R. (1982) Neuronal mapping: a photooxidation reaction makes Lucifer Yellow useful for electron microscopy.Science 217, 953–5.

    PubMed  Google Scholar 

  • McKinney, M., Coyle, J. T. &Hedreen, J. C. (1983) Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system.Journal of Comparative Neurology 217, 103–21.

    PubMed  Google Scholar 

  • Mesulam, M.-M., Mufson, E. J., Wainer, B. H. &Levey, A. I. (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6).Neuroscience 10, 1185–201.

    PubMed  Google Scholar 

  • Molnar, Z. &Blakemore, C. (1991) Lack of regional specificity for connections formed between thalamus and cortex in coculture.Nature 351, 475–7.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Kelley, W., Franke, E. &Eckenstein, F. (1986) Cholinergic neurons and fibres in the rat visual cortex.Journal of Neurocytology 15, 329–36.

    PubMed  Google Scholar 

  • Parnavelas, J. G., Luder, R., Pollard, S. G., Sullivan, K. &Lieberman, A. R. (1983) A qualitative and quantitative ultrastructural study of glial cells in the developing visual cortex of the rat.Philosophical Transactions of the Royal Society of London, Series B 301, 55–84.

    Google Scholar 

  • Roberts, J. S., O'Rourke, N. A. &McConnell, S. K. (1993) Cell migration in cultured cerebral cortical slices.Developmental Biology 155, 396–408.

    PubMed  Google Scholar 

  • Robertson, R. T., Annis, C. &Gähwiler, B. H. (1991) Production of organotypic slice cultures of neural tissue using the roller tube technique. InCellular Neurobiology: A Practical Approach (edited byWheal, H. &Chad, J.) pp. 39–56. Oxford: Oxford University Press.

    Google Scholar 

  • Robertson, R. T., Mostamad, F., Kageyama, G. H., Gallardo, K. A. &Yu, J. (1991) Primary auditiory cortex in the rat: transient expression of acetylcholinesterase activity in developing geniculocortical projections.Developmental Brain Research 58, 81–95.

    PubMed  Google Scholar 

  • Robertson, R. T. &Yu, J. (1993) Acetylcholinesterase and neural development: new tricks for an old dog?News in Physiological Sciences, in press.

  • Romijn, H. J., De Jong, B. M. &Ruijter, J. M. (1988) A procedure for culturing rat neocortex explants in a serum-free nutrient medium.Journal of Neuroscience Methods 23, 75–83.

    PubMed  Google Scholar 

  • Saper, C. B. (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.Journal of Comparative Neurology 222, 313–42.

    PubMed  Google Scholar 

  • Shute, C. C. D. &Lewis, P. R. (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections.Brain 90, 497–520.

    PubMed  Google Scholar 

  • Small, D. H. (1992) Non-cholinergic actions of acetylcholineresterases: proteases regulating cell growth and development?Trends in Biochemical Sciences 15, 213–16.

    Google Scholar 

  • Stichel, C. C. &Singer, W. (1987) Quantitative analysis of choline acetyltransferase-immunoreactive axonal network in the cat primary visual cortex: II. Pre- and postnatal development.Journal of Comparative Neurology 258, 99–111.

    PubMed  Google Scholar 

  • Stoppini, L., Buchs, P. A. &Muller, D. (1991) A simple method for organotypic cultures of nervous tissue.Journal of Neuroscience Methods 37, 173–82.

    PubMed  Google Scholar 

  • Tago, H., Kimura, H. &Maeda, T. (1986) Visualization of detailed acetylcholinesterase fiber and neuron staining in rat brain by a sensitive histochemical procedure.Journal of Histochemistry and Cytochemistry 34, 1431–8.

    PubMed  Google Scholar 

  • Thal, L. J., Gilbertson, E., Armstrong, D. M. &Gage, F. H. (1991) Development of the basal forebrain cholinergic system: phenotype expression prior to target innervation.Neurobiology of Aging 13, 67–72.

    Google Scholar 

  • Wainer, B. H., Lee, H. J., Roback, J. D. &Hammond, D. N. (1991)In vitro cell cultures as a model of the basal forebrain. InThe Basal Forebrain (edited byNapier, T. C.) pp. 415–37. New York: Plenum Press.

    Google Scholar 

  • Wolburg, H. &Bolz, J. (1991) Ultrastructural organization of slice cultures from rat visual cortex.Journal of Neurocytology 20, 552–63.

    PubMed  Google Scholar 

  • Yamamoto, N., Yamada, K., Kurotani, T. &Toyama, K. (1992) Laminar specificity of extrinsic cortical connections studied in coculture preparations.Neuron 9, 217–28.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Distler, P.G., Robertson, R.T. Formation of synapses between basal forebrain afferents and cerebral cortex neurons: an electron microscopic study in organotypic slice cultures. J Neurocytol 22, 627–643 (1993). https://doi.org/10.1007/BF01181489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181489

Keywords

Navigation