Skip to main content
Log in

Transient co-localization of calretinin, parvalbumin, and calbindin-D28k in developing visual cortex of monkey

  • Published:
Journal of Neurocytology

Summary

This paper reports a double-labelling immunocytochemical study of the three calcium-binding proteins calretinin, parvalbumin, and calbindin-D28k in developing and adultMacaca primary visual cortex. In adult visual cortex, each protein marks a subset of GABAergic neurons with a characteristic laminar distribution and virtually no co-localization was found between these three proteins, suggesting that each calcium-binding protein may serve as a marker for one or more cortical subcircuits. The immature visual cortex, immunostained using identical techniques was then analysed to determine if each calcium-binding protein could serve as a developmental marker for these circuits. The Cajal-Retzius cells of layer 1 contained all three proteins during development. Calbindin-D28k and calretinin were co-localized starting at Fd (foetal day) 45 and after Fdl25, parvalbumin also was present in the same Cajal-Retzius cells. All three proteins continued to be expressed until the Cajal-Retzius disappeared postnatally. In layers 2–6 calbindin-D28k and calretinin were never co-localized. In contrast, parvalbumin and calretinin were found in neurons of deep layer 3 from Fd 155 to postnatal (P6) weeks with a few persisting even later. Before birth almost all PV+ neurons in layers 4–6 were CaB+, but by P3 weeks only a few PV+/CaB+ neurons remained in layer 4C and these completely disappeared by P6 weeks. Co-localization in layer 4 neurons overlaps the period of ocular dominance segregation, suggesting that the onset of cortical maturity coincides with segregation of calcium-binding proteins within the GABA interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batini, C., Palestini, M., Thomasset, M. &Vigot, R. (1993) Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids.Neuroreport 4, 927–30.

    Google Scholar 

  • Bode-Greuel, K. M. &Singer, W. (1989) The development of N-methyl-D-aspartate receptors in cat visual cortex.Developmental Brain Research 46, 197–204.

    Google Scholar 

  • Bode-Greuel, K. M. &Singer, W. (1991) Developmental changes of calcium currents in the visual cortex of the cat.Experimental Brain Research 84, 311–18.

    Google Scholar 

  • Braun, K. (1990) Calcium-binding proteins on avian and mammalian central nervous system.Progress in Histochemistry and Cytochemistry 21, 1–64.

    Google Scholar 

  • Carmignoto, G. &Vicini, S. (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex.Science 258, 1007–11.

    Google Scholar 

  • Celio, M. R. (1990) Calbindin-D28k and parvalbumin in the rat nervous system.Neuroscience 35, 375–475.

    Google Scholar 

  • Celio, M. R. &Heizmann, C. W. (1981) Calcium-binding protein, parvalbumin, as a neuronal marker.Nature 293, 300–2.

    Google Scholar 

  • Celio, M. R., Baier, W., Scharer, L., De Viragh, P. A. &Gerday, C. H. (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin.Cell Calcium 9, 81–6.

    Google Scholar 

  • Celio, M. R., Baier, W., Scharer, L., Gregersen, H. J., De Viragh, P. A. &Norman, A. W. (1990) Monoclonal antibodies directed against the calcium binding protein calbindin D-28k.Cell Calcium 11, 599–602.

    Google Scholar 

  • Choi, D. W. &Hartley, D. W. (1993) Calcium and glutamate-induced cortical neuronal death.Research Publications: Association for Research in Nervous and Mental Diseases 71, 23–34.

    Google Scholar 

  • Conde, F., Lund, J. S., Jacobowitz, D. M., Baimbridge, K. G. &Lewis, D. A. (1994) Local circuit neurons immunoreactive for calretinin, calbindin-D28k or parvalbumin in monkey prefrontal cortex: distribution and morphology.Journal of Comparative Neurology 341, 95–116.

    Google Scholar 

  • Demeulemeester, H., Arckens, L., Vandesande, F., Orban, G. A., Heizmann, C. W. &Pochet, R. (1991) Calcium-binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex.Experimental Brain Research 84, 538–44.

    Google Scholar 

  • Glezer, I. I., Hof, P. R. &Morgane, P. J. (1992) Calretinin immunoreactive neurons in the primary visual cortex of dolphin and human brains.Brain Research 595, 181–8.

    Google Scholar 

  • Hendrickson, A. E., Van Brederode, J. F. M., Mulligan, K. A. &Celio, M. R. (1991) Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex.Journal of Comparative Neurology 307, 626–46.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Killackey, H. P. &Chalupa, L. M. (1987) Choline acetytransferase-immunoreactive neurons in fetal monkey cerebral cortex.Developmental Brain Research 37, 313–17.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W. &Streit, P. (1989) Two classes of cortical GABA neurons defined by different calcium-binding protein immunoreactivities.Experimental Brain Research 503, 49–54.

    Google Scholar 

  • Huntley, G. W. &Jones, E. G. (1990) Cajal-Retzius neurons in developing monkey neocortex show immuno-reactivity for calcium-binding proteins.Journal of Neurocytology 19, 200–12.

    Google Scholar 

  • Imamoto, K., Karasawa, N., Isomura, G. &Nagatsu, T. (1994) Cajal-Retzius neurons identified by GABA immunohistochemistry in layer I of the rat cerebral cortex.Neuroscience Research 20, 101–5.

    Google Scholar 

  • Iwakiri, M. &Komatsu, Y. (1993) Postnatal development of NMDA receptor-mediated synaptic transmission in cat visual cortex.Developmental Brain Research 74, 89–97.

    Google Scholar 

  • Kater, S. B. &Mills, L. R. (1991) Regulation of growth cone behavior by calcium.Journal of Neuroscience 11, 891–9.

    Google Scholar 

  • Kostovic, I., Kostovic-Knezevic, L. J. &Vidic, Z. (1985) Prenatal and early postnatal development of large, acetycholinesterase reactive cells in the marginal zone of the human association cortex: a correlated histochemical and Nissl study.Neuroscience Letters Supplement 22, 341.

    Google Scholar 

  • Kumar, A., Schliebs, R. &Bigl, V. (1994) Postnatal development of NMDA, AMPA, and kainate receptors in individual layers of rat visual cortex and the effect of monocular deprivation.International Journal of Developmental Neuroscience 12, 31–41.

    Google Scholar 

  • Levay, S., Wiesel, T. N. &Rubel, D. H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys.Journal of Comparative Neurology 191, 1–51.

    Google Scholar 

  • Lin, M. H., Takahashi, M. P., Takahashi, Y. &Tsumoto, T. (1994) Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development.Neuroscience Research 20, 85–94.

    Google Scholar 

  • Macdermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. &Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons.Nature 321, 519–22.

    Google Scholar 

  • Marin-Padilla, M. (1984) Neurons of layer 1: a developmental analysis. InCerebral Cortex, Vol. 1, Cellular Components of the Cerebral Cortex, (edited byPeters, A. &Jones, E. G.) pp. 447–77. New York: Plenum.

    Google Scholar 

  • Marin-Padilla, M. (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory.Journal of Comparative Neurology 32, 223–40.

    Google Scholar 

  • Meyer, G. &Gonzalez-Hernandez, T. (1993) Development changes in layer 1 of the human neocortex during prenatal life, a DiI-tracing and AChE and NADPH-d histochemistry study.Journal of Comparative Neurology 338, 317–36.

    Google Scholar 

  • Mione, M. C., Danevic, C., Boardman, P., Harris, B. &Parnavelas, J. G. (1994) Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons.Journal of Neuroscience 14, 107–23.

    Google Scholar 

  • Murphy, S. N. &Miller, R. J. (1988) A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons.Proceedings of the National Academy of Sciences (USA) 85, 8737–41.

    Google Scholar 

  • Parmentier, M. (1990) Structure of the human cDNAs and genes coding for calbindin-D28k and calretinin.Advances in Experimental Medicine & Biology 269, 27–34.

    Google Scholar 

  • Pinol, M. R., Kagi, U., Heizmann, C. W., Vogel, B., Seqeier, J.-M., Haas, W. &Hunziker, W. (1990) Poly- and monoclonal antibodies against recombinant rat brain calbindin D-28K were produced to map its selective distribution in the central nervous system.Journal of Neurochemistry 54, 1827–33.

    Google Scholar 

  • Rakic, P. (1977) Prenatal development of the visual system in rhesus monkey.Philosophical Transactions of the Royal Society London B278, 245–60.

    Google Scholar 

  • Rauschecker, J. P., Egert, U. &Kossel, A. (1990) Effects of NMDA antagonists on developmental plasticity in kitten visual cortex.International Journal of Developmental Neuroscience 8, 425–35.

    Google Scholar 

  • Rogers, J. H. (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally by neurons.Journal of Cell Biology 105, 1343–53.

    Google Scholar 

  • Rogers, J. H. (1992) Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA.Brain Research 578, 147–57.

    Google Scholar 

  • Rogers, J. H., Khan, M. &Ellis, J. (1990) Calretinin and other CaBPs in the nervous system.Advances in Experimental Medicine & Biology 269, 195–203.

    Google Scholar 

  • Schwaller, B., Buchwald, P., Blumcke, I., Celio, M. R. &Hunziker, W. (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin.Cell Calcium 14, 639–18.

    Google Scholar 

  • Tsumoto, T., Hagihara, K., Sato, H. &Hata, Y. (1987) NMDA receptors in the visual cortex of young kittens are more effective than those of adult cat.Nature 327, 513–14.

    Google Scholar 

  • Tsumoto, T., Kimura, F. &Nishigori, A. (1990) A role of NMDA receptors and Ca2+ influx in synaptic plasticity in the developing visual cortex.Advances in Experimental Medicine Biology 268, 173–80.

    Google Scholar 

  • Van Brederode, J. F. M., Mulligan, K. A. &Hendrickson, A. E. (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex.Journal of Comparative Neurology 298, 1–22.

    Google Scholar 

  • Weisenhorn, D. M., Prieto, E. W. &Celio, M. R. (1994) Localization of calretinin in cells of layer I (Cajal-Retzius cells) of the developing cortex of rat.Developmental Brain Research 82, 293–7.

    Google Scholar 

  • Winsky, L., Nakata, H., Martin, B. M. &Jacobowitz, D. M. (1989) Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein.Proceedings of the National Academy of Science (USA) 86, 10139–43.

    Google Scholar 

  • Yan, Y-H., Van Brederode, J. F. M. &Hendrickson, A. E. (1995) Developmental changes in expression of calretinin in GABAergic and nonGABAergic neurons in monkey striate cortex.Journal of Comparative Neurology, in press.

  • Yuste, R. &Katz, L. C. (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters.Neuron 6, 333–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y.H., Van Brederode, J.F.M. & Hendrickson, A.E. Transient co-localization of calretinin, parvalbumin, and calbindin-D28k in developing visual cortex of monkey. J Neurocytol 24, 825–837 (1995). https://doi.org/10.1007/BF01179982

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179982

Keywords

Navigation