Skip to main content
Log in

On a nonlocal theory of longitudinal waves in an elastic circular bar

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

After determining the values of the nonlocal moduli for longitudinal waves in an infinite space, Fourier transforms of the equations of axially symmetric longitudinal waves in an infinite circularly cylindrical rod are established and decoupled according to the Pochhammer procedure. Dispersion equation is obtained from the conditions of traction free surface of the rod, and compared with its classical counterpart. While the velocity of long waves coincides, as required, with that derived in the classical case, the velocity of short waves turns out to be about 36% less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

interatomic spacing

a 1,a 2,a 3 :

coefficients defined by (2.12.5)

c :

wave phase velocity

d :

rod diameter

h, l :

defined by (2.15)

k :

wave number

overbar:

denotes Fourier transform

R :

rod radius

r, r′ :

vector of the point of observation and of generic point, respectively

u :

displacement in thex 1-direction

u, w :

displacements in ther- andz-direction, respectively

\(\bar u(r,k;\omega )\) :

double Fourier transform ofu(r, z, t)

δ(r′−r):

Dirac delta function

μ, λ:

Lamé constants

μ′, λ′:

nonlocal moduli

\(\bar \mu \prime (k),\bar \lambda \prime (k)\) :

Fourier transforms of 03BC;′ and λ′

A :

wave length

ϱ:

mass density

τ11 :

normal stress in thex 1-direction

τ rr , τ rz , τ zz :

stress components in polar coordinates,r, α,z

θ:

dilatation

ξ, β* :

defined by (2.20.2)

ω:

wave frequency

\(\bar \Omega\) :

notation defined by (2.13.2)

References

  1. Pochhammer, L.: On the speed of propagation of small vibrations in an infinite isotropic circular cylinder (in German). J. Reine Angew. Math.81, 324 (1976).

    Google Scholar 

  2. Chree, C.: The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications. Trans. Cambridge Philos. Soc.14, 250 (1889).

    Google Scholar 

  3. Bancroft, D.: The velocity of longitudinal waves in cylindrical bars. Phys. Rev.59, 588 (1941).

    Google Scholar 

  4. Hudson, G. E.: Dispersion of elastic waves in solid circular cylinders. Phys. Rev.63, 46 (1943).

    Google Scholar 

  5. Davis, R. M.: A critical study of the Hopkinson pressure bar. Philos. Trans. Roy. Soc. LondonA 240, 375 (1948).

    Google Scholar 

  6. Abramson, H. N.: The propagation of flexural elastic waves in solid circular cylinders. Thesis, University of Texas, Austin, 1956.

    Google Scholar 

  7. Ewing, W. M., Jardetsky, W. S., Press, F.: Elastic waves in layered media. New York: McGraw-Hill 1957.

    Google Scholar 

  8. Oliver, J.: Elastic wave dispersion in a cylindrical rod by a wide-band short duration pulse technique. J. Acoust. Soc. Amer.29, 189 (1957).

    Google Scholar 

  9. Kolsky, H.: Stress waves in solids. New York: Dover 1963.

    Google Scholar 

  10. Eringen, A. C., Suhibi, E. S.: Elastodynamics, Vol. 2. New York: Academic Press 1975.

    Google Scholar 

  11. Green, W. A.: Dispersion relations for elastic waves in bars, in: Progress in solid mechanics (Sneddon, I. N., Hill, R., eds.), Vol. 1, pp. 223–61. Amsterdam: North-Holland 1960.

    Google Scholar 

  12. Green, A. E., Rivlin, R. S.: Multipolar continuum mechanics. Function. theory I, Proc. Roy Soc. LondonA 284, 303 (1965).

    Google Scholar 

  13. Kroener, E.: Continuum mechanics and range of atomic cohesion forces. Proc. Int. Conf. Fracture1, Jap. Soc. Fract. Mat., Sendai, 1966.

    Google Scholar 

  14. Eringen, A. C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci.4, 179–202 (1966).

    Google Scholar 

  15. Edelen, D. G. B.: Protelastic bodies with large deformation. Arch. Rat. Mech. Anal.34, 283 (1969).

    Google Scholar 

  16. Vaisman, A. M., Kunin, I. A.: Boundary value problems in nonlocal theory of elasticity (in Russian). J. Appl. Math. Mech.33, 784–796 (1969).

    Google Scholar 

  17. Eringen, A. C.: Nonlocal polar field theories, in: Cont. Physics (Eringen, A. C., ed.), Vol. 4, pp. 205–267. New York: Academic Press 1976.

    Google Scholar 

  18. Edelen, D. G. B.: Nonlocal field theories, in: Cont. physics (Eringen, A. C., ed.), Vol. 4, pp. 75–204. New York: Academic Press 1976.

    Google Scholar 

  19. Nowinski, J. L.: On the nonlocal aspects of the propagation of Love waves. Int. J. Eng. Sci., in press.

  20. Eringen, A. C.: Continuum mechanic at the atomic scale, in: Crystal lattice defects7, pp. 109–130. New York: Gordon and Breach 1977.

    Google Scholar 

  21. Morse, P. M., Feshbach, H.: Methods of theoretical physics,1. New York: McGraw-Hill 1953.

    Google Scholar 

  22. Love, A. E. H.: A treatise on the mathematical theory of elasticity. New York: Dover 1944.

    Google Scholar 

  23. Eringen, A. C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci.1, 11–17 (1973).

    Google Scholar 

  24. Brillouin, L.: Wave propagation in periodic structures. New York: McGraw-Hill 1946.

    Google Scholar 

  25. Lattice dynamics (Wallis, R. F., ed.. Proc. Intern. Conf. Copenhagen, 1963, Oxford: Pergamon Press 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Prepared with partial support of the University of Delaware.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowinski, J.L. On a nonlocal theory of longitudinal waves in an elastic circular bar. Acta Mechanica 52, 189–200 (1984). https://doi.org/10.1007/BF01179616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179616

Keywords

Navigation