Skip to main content
Log in

Hamilton's principle as substationarity principle

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The present paper deals with Hamilton's principle for nonconvex, generally non-differentiable functions. It is shown that in this case Hamilton's principle can be formulated as a substationarity principle which is a generalization of a stationarity principle. To this end the recently defined notion of Clarke's generalized gradient is used. Finally a generalization of modified Hamilton's principle is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau, J. J.: La notion de sur-potentiel et les liaisons unilatérales en élastostatique. C. R. Acad. Sc.267, 954–957 (1968).

    Google Scholar 

  2. Panagiotopoulos, P. D.: Inequality problems in mechanics, convex and nonconvex energy functions. Basel-Boston: Birkhäuser (in press).

  3. Clarke, F. H.: Generalized gradients and applications. Trans. Amer. Math. Soc.205, 247–262 (1975).

    Google Scholar 

  4. Rockafellar, R. T.: The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions. Berlin: Heldermann 1981.

    Google Scholar 

  5. May, H.-O.: Generalized variational principles and nondifferentiable potentials in analytical mechanics. J. Math. Phys.25, 491–493 (1984).

    Google Scholar 

  6. Panagiotopoulos, P. D.: Nonconvex superpotentials in the sense of F. H. Clarke and applications. Mech. Res. Comm.8, 335–340 (1981).

    Google Scholar 

  7. Panagiotopoulos, P. D.: Nonconvex energy functions. Hemivariational inequalities and sustationarity principles. Acta Mechanica48, 111–130 (1983).

    Google Scholar 

  8. Clarke, F. H.: The Euler-Lagrange differential inclusion. J. Diff. Equations19, 80–90 (1975).

    Google Scholar 

  9. Hamel, G.: Theoretische Mechanik. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  10. Goldstein, H.: Classical mechanics. Reading, Mass.: Addison-Wesley 1980.

    Google Scholar 

  11. Landau, L. D., Lifschitz, E. M.: Lehrbuch der theoretischen Physik I. Berlin: Akademie-Verlag 1979.

    Google Scholar 

  12. Rockafellar, R. T.: Convex analysis. Princeton University Press 1970.

  13. Panagiotopoulos, P. D.: Ungleichungsprobleme und Differentialinklusionen in der analytischen Mechanik. Annals of the School of Technology, Aristotle University, Thessaloniki Greece, Vol. Θ, 99–140 (1982). (Appears also as an appendix to [14].)

    Google Scholar 

  14. Heinz, C.: Vorlesungen über analytische Mechanik. Lecture given at RWTH Aachen, not yet published.

  15. Rockafellar, R. T.: Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl.32, 174–222 (1970).

    Google Scholar 

  16. Heinz, C.: Neue Aspekte in der Feldtheorie. Acta Mechanica41, 23–33 (1981).

    Google Scholar 

  17. Rudin, W.: Real and complex analysis. New York: McGraw-Hill 1974.

    Google Scholar 

  18. Rockafellar, R. T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math.32, 257–280 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, H.O. Hamilton's principle as substationarity principle. Acta Mechanica 52, 177–187 (1984). https://doi.org/10.1007/BF01179615

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179615

Keywords

Navigation