Advertisement

Acta Informatica

, Volume 30, Issue 3, pp 233–248 | Cite as

The analysis of heuristics for search trees

  • Patricio V. Poblete
Article

Abstract

We analyze the performance of search trees built under a variety of insertion heuristics. The main results are a method to obtain asymptotic expressions for the moments of the distribution of the search time, and a proof that this distribution is asymptotically normal.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions. New York: Dover 1968Google Scholar
  2. 2.
    Comtet, L.: Advanced combinatorics. Dordrecht: Reidel 1974Google Scholar
  3. 3.
    Cunto, W., Gascon, J.L.: Improving time and space efficiency in generalized binary search trees. Acta Inf.24, 583–594 (1987)Google Scholar
  4. 4.
    Cunto, W., Gonnet, G.H., Munro, J.I., Poblete, P.V.: Fringe analysis for extquick: an in situ distributive external sorting algorithm. Inf. Comput.92(2), 141–160 (1991)Google Scholar
  5. 5.
    Gantmacher, F.R.: The theory of matrices, vol. 1. Broomall, PA: Chelsea 1959Google Scholar
  6. 6.
    Gantmacher, F.R.: Applications of the theory of matrices. New York: Interscience 1959Google Scholar
  7. 7.
    Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Reading, MA: Addison-Wesley 1954Google Scholar
  8. 8.
    Goncharov, V.: On the field of combinatory analysis. Izv. Akad. Nauk SSSR Ser. Math.8 (1944)Google Scholar
  9. 9.
    Gonnet, G.H., Baeza-Yates R.: Handbook of algorithms and data structures, 2nd edn. Reading, MA: Addison-Wesley 1991Google Scholar
  10. 10.
    Greene, D.H., Knuth, D.E.: Mathematics for the analysis of algorithms. Boston: Birkhäuser 1982Google Scholar
  11. 11.
    Knott, G.D.: Deletions in binary storage trees. Report STAN-CS-75-491, Stanford University, May 1975Google Scholar
  12. 12.
    Knuth, D.E.: The art of computer programming, vol. 1: fundamental algorithms. Reading MA: Addison-Wesley 1973Google Scholar
  13. 13.
    Knuth, D.E.: The art of computer programming, vol. 3: sorting and searching. Reading MA: Addison-Wesley 1973Google Scholar
  14. 14.
    Munro, J.I., Poblete, P.V.: Fault tolerance and storage reduction in binary search trees. Inf. Control62(3), 210–219 (1984)Google Scholar
  15. 15.
    Poblete, P.V., Munro, J.I.: The analysis of a fringe heuristic for binary search trees. J. Algorithms6, 336–350 (1985)Google Scholar
  16. 16.
    Sedgewick, R.: Quicksort. Report STAN-CS-75-492, Stanford University, 1975Google Scholar
  17. 17.
    Seneta, E.: Non-negative matrices and Markov chains. (Springer Series Statistics) Berlin Heidelberg New York: Springer 1981Google Scholar
  18. 18.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Oxford University Press 1965Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Patricio V. Poblete
    • 1
  1. 1.Departamento de Ciencias de la ComputacionUniversidad de ChileSantiagoChile

Personalised recommendations