Skip to main content
Log in

An approximate analytical 2D-solution for the stresses and strains in eigenstrained cubic materials

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Continuous and discrete Fourier transforms (CFT and DFT, respectively) are used to derive a formal solution for the Fourier transforms of stresses and strains that develop in elastically homogeneous but arbitrarily eigenstrained linear-elastic bodies. The solution is then specialized to the case of a dilatorically eigenstrained cylindrical region in an infinite matrix, both of which are made of the same cubic material with the same orientation of principal axes. In the continuous case all integrations necessary for the inverse Fourier transformation can be carried out explicitly provided the material is “slightly” cubic. This results in an approximate but analytical expression for the stresses and strains in physical space. Moreover, the stress-strain fields inside of the inclusion prove to be of the Eshelby type, i.e., they are homogeneous and isotropic. The range of validity of the analytical solution is assessed numerically by means of discrete Fourier transforms (DFT). It is demonstrated that even for strongly cubic materials the stresses and strains are quite well represented by the aforementioned approximate solution. Moreover, the total elastic energy of two eigenstrained cylindrical inclusions in slightly cubic material with the same orientation of their principal axes is calculated analytically by means of CFT. The minimum of the energy is determined as a function of the relative position of the two inclusions with respect to the crystal axes and it is used to explain the formation of textures in cubic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mader, W.: On the electron diffraction contrast caused by large inclusions. Phil. Mag. A.55, 59–83 (1987).

    Google Scholar 

  2. Bischoff, E., Rühle, M., Sbaizero, O., Evans, A. G.: Microstructural studies of the interfacial zone of a SiC-fiber-reinforced Lithium-Aluminum Silicate glass-ceramic. J. Am. Ceram. Soc.72, 741–745 (1989).

    Google Scholar 

  3. Stevens, R.: An introduction to Zirconia-Zirconia and Zirconia ceramics, 2nd ed., Magnesium Elektron Publication 113, Litho 2000, Twickenham 1986.

  4. Hazotte, A., Bellet, D., Ganghoffer, J. F., Denis, S., Bastie, P., Simon, A.: On the contribution of internal mismatch stresses to the high-temperature broadening of gamma-ray diffraction peaks in a Ni-based single crystal. Phil. Mag. Lett.66, 189–196 (1992).

    Google Scholar 

  5. Ignat, M., Buffiere, J.-Y., Chaix, J. M.: Microstructures induced by a stress gradient in a Nickel-base superalloy. Acta Metall. Mater.41, 855–862 (1993).

    Google Scholar 

  6. Socrate, S., Parks, D. M.: Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater.41, 2185–2209 (1993).

    Google Scholar 

  7. Hazotte, A., Lacaze, J.: Charactérisation quantitative de la microstructure des superalliages à base de nickel. La Revue de Métallurgie-CIT/Science et Génie des Matériaux, Février 277–294 (1994).

    Google Scholar 

  8. Mura, T.: Micromechanics of defects in solids, 2nd rev. ed., Dordrecht: Martinus Nijhoff 1987.

    Google Scholar 

  9. Morse, P. M., Feshbach, H.: Methods of theoretical physics, Part I. New York: McGraw-Hill 1953.

    Google Scholar 

  10. Sneddon, I. N.: The use of integral transforms. New York: Mc Graw-Hill 1972.

    Google Scholar 

  11. Bracewell, R. N.: The Fourier transform and its applications, 2nd rev. ed., New York: McGraw-Hill 1996.

    Google Scholar 

  12. Suquet, P.: Une méthode simplifiée pour le calcul de propriétés élastiques de matériaux hétérogènes à structure périodique. C. R. Acad. Sci. Paris.311, 769–774 (1990).

    Google Scholar 

  13. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C. R. Acad. Sci. Paris,318, 1417–1423 (1994).

    Google Scholar 

  14. Falk, G.: Theoretische Pysik auf der Grundlage einer allgemeinen Dynamik, Band Ia. Aufgaben und Ergänzungen zur Punktmechanik. Berlin: Springer 1966.

    Google Scholar 

  15. Mc Cormack, M., Khachaturyan, A. G., Morris Jr, J. W.: A two-dimensional analysis of the evolution of coherent precipitates in elastic media. Acta Metall. Mater.40, 325–336 (1992).

    Google Scholar 

  16. Withers, P. J.: The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium and its relevance to composite materials. Phil. Mag.59, 759–781 (1989).

    Google Scholar 

  17. Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity, 4th ed., Groningen: Noordhoff 1963.

    Google Scholar 

  18. Auld, B. A.: Acoustic fields and waves in solids. Vol. I, 2nd ed., Malabar: Krieger 1990.

    Google Scholar 

  19. Müller, W. H., Neumann, S.: An approximate analytical 3D-solution for the stresses and strains in eigenstrained cubic materials. Int. J. Solids Struct.35 (22), 2931–2958 (1998).

    Google Scholar 

  20. Wolfram, S.: Mathematica®. Ein System für Mathematik auf dem Computer, 2. Aufl., Bonn: Addison-Wesley 1992.

    Google Scholar 

  21. Dreyer, W.: Development of microstructure based viscoplastic models for an advanced design of single crystal hot section components. In: Periodic progress report, development of microstructural based viscoplastic models for an advanced design of single crystal hot section components (Olschewski, J., ed.). Brite/Euram Programme, BAM internal report A.1-17-A.1-29 Berlin (1995).

  22. Müller, W. H.: Fourier transforms and their application to the formation of textures and changes of morphology in solids. In: IUTAM Symposium on Transformation Problems in Composite and Active Materials, pp. 61–72, Cairo, Egypt, March 9–12, 1997. Dordrecht: Kluwer Academic Publishers 1998.

    Google Scholar 

  23. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of composites from images of their microstructures. In: Microstructure-property interactions in composite materials (Pyrz, R., ed.), pp. 235–246. Dordrecht: Kluwer Academic Publishers 1995.

    Google Scholar 

  24. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comp. Meth. Appl. Mech. Engng.157, 69–94 (1998).

    Google Scholar 

  25. Tien, K., Copley, S. M.: The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed Nickel-base superalloy crystal. Metall. Trans.2, 543–553 (1970).

    Google Scholar 

  26. Pineau, A.: Influence of uniaxial stress on the morphology of coherent precipitates during coarsening-elastic energy considerations. Acta Metall.24, 559–564 (1975).

    Google Scholar 

  27. Khachaturyan, A. G., Shatalov, G. A.: Elastic-interaction potential of defects in a crystal. Soviet Physics-Solid State11, 118–123 (1969).

    Google Scholar 

  28. Khachaturyan, A. G.: Theory of structural transformations in solids. New York: Wiley 1983.

    Google Scholar 

  29. Dreyer, W., Olschewski, J.: Order-disorder transitions under load in single crystal superalloys: theory. In: Solid→solid phase transformations (Johnson, W. C., Howe, J. M., Laughlin, D. E., Soffa, W. A., eds.), pp. 419–424. Warrendale: The Minerals, Metals & Materials Society 1994.

    Google Scholar 

  30. Jury, E. I.: Theory and application of the Z-transform method. Huntington: Krieger 1973.

    Google Scholar 

  31. Rosenfeld, A., Kak, A. C.: Digital picture processing, vol. 1., 2nd ed., New York: Academic Press 1982.

    Google Scholar 

  32. Henrici, P.: Applied and computational complex analysis, vol. 3. Discrete Fourier analysis-Cauchy integrals-construction of conformal maps-univalent functions. New York: Wiley 1986.

    Google Scholar 

  33. Davis, P. J., Polonsky, I.: Numerical interpolation, differentiation, and integration. In: Handbook of mathematical functions (Abramowitz, M., Stegun, I. A., eds.), Sect. 25. Washington: Applied Mathematics Series 1964.

  34. Kittel, C.: Introduction to solid state physics, 4th ed., New York: Wiley 1971).

    Google Scholar 

  35. Gradshteyn, I. S., Ryzhik, I. M.: Table of integrals, series, and products. New York: Academic Press 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyer, W., Müller, W.H. & Olschewski, J. An approximate analytical 2D-solution for the stresses and strains in eigenstrained cubic materials. Acta Mechanica 136, 171–192 (1999). https://doi.org/10.1007/BF01179256

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179256

Keywords

Navigation