Skip to main content
Log in

Two non-associated isotropic elastoplastic hardening models for frictional materials

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The paper proposes two new elastoplastic constitutive models for the description of deformation mechanisms of frictional materials which are suitable for a wide range of applications in soil mechanics. The first model provides an extension of the classical Drucker-Prager-type function in order to overcome numerical difficulties in the tensile stress range. The key idea here is the introduction of a constantperturbation-type parameter which yields aC 2-differentiable smoothing-out of the peak of the Drucker-Prager cone. We then extend this formulation to a closed single-surface model based on a decoupled description of the deviatoric and the mean stress response. Both models are equipped with a saturation-type hardening mechanism. They have proved to be very robust and successful in numerical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Boer, R.: On plastic deformation of soils. Int. J. Plasticity4, 371–391 (1988).

    Google Scholar 

  2. de Borst, R.: Non-linear analysis of frictional materials. Ph. D. Diss., Teschnische Hogeschool Delft 1986.

  3. Bronstein, I. N., Semendjajew, K. A.: Taschenbuch der Mathematik. Zürich Frankfurt/M.: Harri Deutsch 1971.

    Google Scholar 

  4. Chen, W. F., Saleeb, A. F.: Constitutive equations for engineering materials. New York: Wiley-Interscience 1982.

    Google Scholar 

  5. Chen, W. F., Mizuno, E.: Nonlinear analysis in soil mechanics. In: Developments in geotechnical engineering 53. New York: Elsevier 1990.

    Google Scholar 

  6. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys.47, 597–613 (1969).

    Google Scholar 

  7. Desai, C. S.: A general basis for yield, failure and potential functions in plasticity. Int. J. Num. Anal. Meth. Geomech.4, 361–375 (1980).

    Google Scholar 

  8. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. In: Proceedings of the first U.S. National Congress of Applied Mechanics, Chicago, June 11–16, 1951, pp. 487–491.

  9. Drucker, D. C.: Update of conventional and unconventional plastic response and representation. Appl. Mech. Rev. Ann. Suppl. 1996,48, No. 10, Part 2, 92–100 (1996).

    Google Scholar 

  10. Drucker, D. C., Li, M.: Triaxial test instability of a nonassociated flow-rule model. ASCE J. Eng Mech. Div.119, 1188–1204 (1993).

    Google Scholar 

  11. Drucker, D. C., Li, M.: Stable response in the plastic range with local instability. ZAMP46, 375–385 (1995).

    Google Scholar 

  12. Drucker, D. C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. J. Appl. Math.10, 157–165 (1952).

    Google Scholar 

  13. Duxbury, P., Xikui, L.: Development of elasto-plastic material models in a natural coordinate system. Comp. Meth. Appl. Mech. Eng135, 283–306 (1996).

    Google Scholar 

  14. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech.65, 246–259 (1995).

    Google Scholar 

  15. Gudehus, G.: Elastoplastische Stoffgleichungen für trockenen Sand. Ing. Arch.42, 151–169 (1973).

    Google Scholar 

  16. Hill, R.: The mathematical theory of plasticity. Oxford: Clarendon Press 1950.

    Google Scholar 

  17. Koiter, W. T.: General theorems of elastic-plastic solids. In: Progress in solid mechanics (Sneddon, I. N., Hill, R. eds.). North Holland 1960.

  18. Krenk, S., Borup, M., Hedegaard, J.: A triaxial characteristic state model for sand. Engineering Mechanics Paper 24, Department of Building Technology and Structural Engineering, Aalborg Universitet 1994.

  19. Lade, P. V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct.13, 1019–1035 (1977).

    Google Scholar 

  20. Lade, P. V., Kim, M. K.: Single hardening constitutive model for frictional materials, II. Yield criterion and plastic work contours. Comp. Geotechn.6, 13–29 (1988).

    Google Scholar 

  21. Lade, P. V., Kim, M. K.: Single hardening constitutive model for soil, rock and concrete. Int. J. Solids Struct.32, 1963–1978 (1994).

    Google Scholar 

  22. Leroy, Y., Ortiz, M.: Finite element analysis of strain localization in frictional materials. Int. J. Num. Anal. Meth. Geomech.13, 53–74 (1989).

    Google Scholar 

  23. Li, M., Drucker, D. C.: Instability and bifurcation of a non-associated extended Mises model in the hardening regime. J. Mech. Phys. Solids.42, 1883–1904 (1995).

    Google Scholar 

  24. Lubliner, I.: Plasticity theory. New York: Macmillan 1990.

    Google Scholar 

  25. Miehe, C.: Multisurface thermoplasticity for single crystals at large strains in terms of Eulerian vector updates. Int. J. Solids Struct.33, 1981–2004 (1996).

    Google Scholar 

  26. Roscoe, K. H., Burland, J. B.: On the generalized stress-strain behavior of ‘wet’ clay. In: Engineering plasticity, pp. 535–609. Cambridge: Cambridge University Press 1968.

    Google Scholar 

  27. Simó, J. C., Kennedy, J. G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Num. Meth. Eng26, 2161–2185 (1988).

    Google Scholar 

  28. Simó, J. C., Meschke, G.: A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials. Comp. Mech.11, 253–278 (1993).

    Google Scholar 

  29. Vermeer, P. A.: A double hardening model for sand. Géotechnique28, 413–433 (1978).

    Google Scholar 

  30. Vermeer, P. A. de Borst, R.: Non-associated plasticity for soils, concrete and rock. HERON29, No. 3 (1984).

  31. Wood, D. M.: Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrecht, M., Miehe, C. Two non-associated isotropic elastoplastic hardening models for frictional materials. Acta Mechanica 135, 73–90 (1999). https://doi.org/10.1007/BF01179047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179047

Keywords

Navigation