Skip to main content
Log in

Gundlagen der Strahlungsgasdynamik

  • Übersichtsartikel
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Zusammenfassung

Der folgende Artikel gibt eine kurze Einführung in die Strömungsmechanik strahlender Gase. Nach der Definition der wichtigsten Begriffe werden die Grundgleichungen der Strahlungsgasdynamik formuliert. Linearisierte Gleichungen werden aufgestellt und auf einfache Beispiele stationärer und instationärer Gasströmungen angewendet. Der Einfluß der Strahlung auf die Strömungen wird diskutiert.

Summary

This paper gives a brief introduction to the dynamics of radiating gases. After defining the most important quantities of the radiation field, the fundamental equations of radiation gas dynamics are formulated. Linearised equations are given and applied to simple examples of steady and unsteady gas flow. The influence of radiation on the flows is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Unsöld, A.: Physik der Sternatmosphären. 2. Auflage, Springer, Berlin, 1955.

    Google Scholar 

  2. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Publications, New York, 1957.

    Google Scholar 

  3. Eckert, E.: Einführung in den Wärme- und Stoffaustausch. 2. Auflage, Springer, Berlin, 1959.

    Google Scholar 

  4. Ledinegg, M.: Dampferzeugung, Dampfkessel, Feuerungen. 2. Auflage, Springer, Wien, 1966.

    Google Scholar 

  5. Chandrasekhar, S.: Radiative Transfer. Dover Publications, New York, 1960.

    Google Scholar 

  6. Kourganoff, V.: Basic Methods in Transfer Problems. Dover Publications, New York, 1963.

    Google Scholar 

  7. Allen, H. J.: Hypersonic aerodynamic problems of the future. In: “The High Temperature Aspects of Hypersonic Flow”, ed. byW. C. Nelson Pergamon Press, Oxford, 1964.

    Google Scholar 

  8. Kivel, B.: Radiation from hot air and its effect on stagnation point heating. J. Aero. Sci.28, 96–102 (1961).

    Google Scholar 

  9. Zhigulev, V. N., Y. E. A. Romishevskii andV. K. Vertuschkin: Role of radiation in modern gasdynamics. AIAA J.1, 1473–1485 (1963), (Russian Supplement).

    Google Scholar 

  10. Goulard, R.: Fundamental equations of radiation gas dynamics. In: “The High Temperature Aspects of Hypersonic Flow”, ed. byW. C. Nelson. Pergamon Press, Oxford, 1964.

    Google Scholar 

  11. Simon, R.: The conservation equations of a classical plasma in the presence of radiation. J. Quant. Spectrosc. Radiat. Transfer3, 1–14 (1963).

    Google Scholar 

  12. Scala, S. M. andD. H. Sampson: Heat transfer in hypersonic flow with radiation and chemical reaction. In: “Supersonic Flow, Chemical Processes and Radiative Transfer”, ed. byD. B. Olfe andV. Zakkay. Pergamon Press, Oxford, 1964.

    Google Scholar 

  13. Goulard, R.: Similarity parameters in radiation gas-dynamics. In: “High Temperatures in Aeronautics”, ed. byC. Ferrari. Pergamon Press, Oxford, 1964.

    Google Scholar 

  14. Lighthill, M. J.: Dynamics of a dissociating gas. Part 2: Quasi-equilibrium transfer theory. J. Fluid Mech.8, 161–182 (1960).

    Google Scholar 

  15. Ferrari, C. andJ. H. Clarke: Photoionization upstream of a strong shock wave. In: “Supersonic Flow, Chemical Processes and Radiative Transfer”, ed. byD. B. Olfe andV. Zakkay. Pergamon Press, Oxford, 1964.

    Google Scholar 

  16. Finkelnburg, W. undH. Maecker: Elektrische Bögen und thermisches Plasma. Handbuch der Physik, Bd. XXII, Gasentladungen II, S. 254–444. Springer, Berlin, 1956.

    Google Scholar 

  17. Sampson, D. H.: Radiative Contributions to Energy and Momentum Transport in a Gas. J. Wiley, New York, 1965.

    Google Scholar 

  18. Pai, S. I.: Radiation Gas Dynamics. Springer, Wien, 1966.

    Google Scholar 

  19. Vincenti, W. G. andC. H. Kruger: Introduction to Physical Gas Dynamics. John Wiley and Sons, New York, 1965.

    Google Scholar 

  20. Ebert, H.: Physikalisches Taschenbuch. 3. Auflage, Vieweg, Braunschweig, 1962.

    Google Scholar 

  21. Armstrong, B. H., J. Sokoloff, R. W. Nicholls, D. H. Holland andR. E. Meyerott: Radiative properties of high temperature air. J. Quant. Spectr. Rad. Transfer1, 143–162 (1961).

    Google Scholar 

  22. Churchill, D. R., S. A. Hagstrom andR. K. M. Landshoff: The spectral absorption coefficient of heated air. J. Quant. Spectr. Rad. Transfer4, 291–321 (1964).

    Google Scholar 

  23. Krascella, N. L.: Tables of the composition, opacity and thermodynamics properties of hydrogen at high temperature. NASA SP-3005 (1963).

  24. Peters, T.: Über die kontinuierliche Emission und Absorption von Plasmen. Z. Flugwiss.14, 89–98 (1966).

    Google Scholar 

  25. Planck, M.: Vorlesungen über die Theorie der Wärmestrahlung. 5. Auflage, J. A. Barth, Leipzig, 1923. (Zur Zeit vergriffen; engl. Übersetzung der 2. Auflage: Theory of Heat Radiation. Dover Publications, New York, 1959).

    Google Scholar 

  26. Hansen, C. F.: A radiation model for nonequilibrium molecular gases. AIAA J.2, 611–616 (1964).

    Google Scholar 

  27. Ruminskii, A. N.: Boundary layer in radiating and absorbing media. ARS-Journal32, 1135–1138 (1962), (Russian Supplement).

    Google Scholar 

  28. Traugott, S. C.: A differential approximation for radiative transfer with application to normal shock structure. In: Proceedings of the 1963 Heat Transfer and Fluid Mechanics Institute, ed. byA. Roshko et al. Stanford University Press, 1963.

  29. Cheng, P.: Two-dimensional radiating gas flow by a moment method. AIAA J.2, 1662–1664 (1964).

    Google Scholar 

  30. Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J.4, 238–245 (1966). Comment: AIAA J.6, 571 (1968).

    Google Scholar 

  31. Sampson, D. H.: Choice of an appropriate mean absorption coefficient for use in the general grey gas equations. J. Quant. Spectr. Rad. Transfer5, 211 (1965).

    Google Scholar 

  32. Cess, R. D.: On the differential approximation in radiative transfer. ZAMP17, 776–781 (1966).

    Google Scholar 

  33. Vincenti, W. G. andB. S. Baldwin: Effect of thermal radiation on the propagation of plane acoustic waves. J. Fluid Mech.12, 449–477 (1962).

    Google Scholar 

  34. Lick, W. J.: The propagation of small disturbances in a radiating gas. J. Fluid Mech.18, 274–284 (1964).

    Google Scholar 

  35. Heaslet, M. A. andB. S. Baldwin: Predictions of the structure of radiation-resisted shock waves. Phys. Fluids6, 781–791 (1963).

    Google Scholar 

  36. Mitchner, M. andM. Vinokur: Radiation smoothing of shocks with and without a magnetic field. Phys. Fluids6, 1682–1692 (1963).

    Google Scholar 

  37. Pearson, W. E.: On the direct solution of the governing equations for radiation-resisted shock waves. NASA TN D-2128 (1964).

  38. Olfe, D. B.: Radiation-perturbed flow fields of normal and oblique shock waves. AIAA J.2, 1928–1938 (1964).

    Google Scholar 

  39. Olfe, D. B.: Radiative cooling in transparent shock layers of wedges and cones. AIAA J.4, 1734–1740 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 6 Textabbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W. Gundlagen der Strahlungsgasdynamik. Acta Mechanica 5, 85–117 (1968). https://doi.org/10.1007/BF01178826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178826

Navigation