Acta Mechanica

, Volume 146, Issue 1–2, pp 59–71 | Cite as

Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface

  • H. S. Takhar
  • A. J. Chamkha
  • G. Nath
Original Papers


The development of velocity and temperature fields of an incompressible viscous electrically conducting fluid, caused by an impulsive stretching of the surface in two lateral directions and by suddenly increasing the surface temperature from that of the surrounding fluid, is studied. The partial differential equations governing the unsteady laminar boundary-layer flow are solved numerically using an implicit finite difference scheme. For some particular cases, closed form solutions are obtained, and for large values of the independent variable asymptotic solutions are found. The surface shear stresses inx-andy-directions and the surface heat transfer increase with the magnetic field and the stretching ratio, and there is a smooth transition from the short-time solution to the long-time solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Crane, L. J.: Flow past a stretching plate. ZAMP21, 645–647 (1970).Google Scholar
  2. [2]
    Gupta, P. S., Gupta, A. S.: Heat and mass tranfer on a stretching sheet with suction and blowing. J. Chem. Engng55, 744–746 (1977).Google Scholar
  3. [3]
    Chakrabarti, A., Gupta, A. S.: Hydromagnetic flow, heat and mass transfer over a stretching sheet. Quart. Appl. Math.33, 73–78 (1979).Google Scholar
  4. [4]
    Carragher, P., Crane, L. J.: Heat transfer on a continuous stretching sheet. ZAMM62, 564–565 (1982).Google Scholar
  5. [5]
    Dutta, B. K., Roy, P., Gupta, A. S.: Temperature field in flow over a stretching sheet with uniform heat flux. Int. Comm. Heat Mass Transfer28, 1234–1237 (1985).Google Scholar
  6. [6]
    Jeng, D. R., Chang, T. C. A., DeWitt, K. J.: Momentum and heat transfer on a continuous moving surface. J. Heat Transfer108, 532–539 (1986).Google Scholar
  7. [7]
    Dutta, B. K.: Heat transfer from a stretching sheet with uniform suction and blowing. Acta Mech.78, 255–262 (1989).Google Scholar
  8. [8]
    Andersson, H. I.: An exact solution of the Navier-Stokes equations for MHD flow. Acta Mech.113, 241–244 (1995).Google Scholar
  9. [9]
    Chiam, T. C.: Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet. Int. Comm. Heat Mass Transfer23, 239–248 (1996).Google Scholar
  10. [10]
    Vajravelu, K. A., Hadjucolaou, A.: Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. Int. J. Engng Sci.35, 1237–1244 (1997).Google Scholar
  11. [11]
    Wang, C. Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids27, 1915–1917 (1984).Google Scholar
  12. [12]
    Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid, Part I. Quart. J. Mech. Appl. Math.4, 182–198 (1951).Google Scholar
  13. [13]
    Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid, Part II. Quart. J. Mech. Appl. Math.26, 142–153 (1973).Google Scholar
  14. [14]
    Hall, M. G.: The boundary layer over an impulsively started flat plate. Proc. Roy. Soc.310A, 401–414 (1969).Google Scholar
  15. [15]
    Dennis, S. C. R.: The motion of a viscous fluid past on impulsively started semi-infinite flat plate. J. Inst. Math. Appl.10, 105–117 (1972).Google Scholar
  16. [16]
    Watkins, C. A.: Heat transfer in the boundary layer over an impulsively started flat plate. J. Heat Transfer97, 482–484 (1975).Google Scholar
  17. [17]
    Smith, S. A.: The impulsive motion of a wedge in a viscous fluid. ZAMP18, 508–522 (1967).Google Scholar
  18. [18]
    Nanbu, K.: Unsteady Falkner-Skan flow. ZAMP22, 1167–1172 (1971).Google Scholar
  19. [19]
    Williams, J. C., Rhyne, T. H.: Boundary layer development on a wedge impulsively set into motion. SIAM J. Appl. Math.38, 215–224 (1980).Google Scholar
  20. [20]
    Eringen, A. C., Maugin, G. A.: Electrodynamics of continua, vol.2, New York: Springer 1990.Google Scholar
  21. [21]
    Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions, vol.55. Providence. National Bureau of Standards. Amer. Math. Soc. 1972.Google Scholar
  22. [22]
    Merkin, J. H.: A note on the solution of a differential equation arising in boundary-layer theory. J. Engng Math.18, 31–36 (1984).Google Scholar
  23. [23]
    Blottner, F.: Finite-difference method of solution of the boundary-layer equations. AJAA J.8, 193–205 (1970).Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • H. S. Takhar
    • 1
  • A. J. Chamkha
    • 2
  • G. Nath
    • 3
  1. 1.Department of Engineering and TechnologyManchester Metropolitan UniversityManchesterUK
  2. 2.Department of Mechanical EngineeringSafatKuwait UniversityKuwait
  3. 3.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations