Skip to main content
Log in

Fully developed flow of a modified second grade fluid with temperature dependent viscosity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper we will study the fully developed flow of a modified (and sometimes referred to as the generalized) second grade fluid down an inclined plane. The reasons for using such a model for the flow of non-Newtonian fluids are (i) the capability of predicting the normal stress differences and (ii) allowing for the possibility of shear dependent viscosity. The boundary value problem is solved numerically, and the special case of constant viscosity amends itself an exact solution (as previously reported in the literature) which serves as a test case to check the accuracy of our numerical scheme. The velocity and temperature profiles are obtained for various dimensionless numbers, for the case where the viscosity is also a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz, F. T.: A note on the flow of a non-Newtonian fluid film. Int. J. Non-Linear Mech.33, 1061–1067 (1998).

    Google Scholar 

  2. Al-Besharah, J. M., Akashah, S. A., Mumford, C. J.: The effect of temperature and pressure on the viscosities of crude oils and their mixtures. Ind. Eng. Chem. Res.28, 213–221 (1989).

    Google Scholar 

  3. Andersson, H. I., Shang, D. Y.: An extended study of the hydrodynamics of gravity-driven film flow of power-law fluids. Fluid Dyn. Res.22, 345–357 (1998).

    Google Scholar 

  4. Astarita, G., Marrucci, G., Palumbo, G.: Non-Newtonian gravity flow along inclined plane surfaces. Ind. Engng Chem. Fund.34, 333–339 (1964).

    Google Scholar 

  5. Bird, R. B., Armstrong, R. C., Hassager, J.: Dynamics of polymeric liquids, vol. 1. New York: Wiley 1977.

    Google Scholar 

  6. Dunn, J. E., Fosdick, R. L.: Thermodynamics stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rat. Mech. Anal.56, 191–252 (1974).

    Google Scholar 

  7. Dunn, J. E., Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Engng Sci.33, 689–729 (1995).

    Google Scholar 

  8. Fosdick, R. L., Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade. Proc. R. Soc. London A339, 351–377 (1980).

    Google Scholar 

  9. Etemad, S., Etemad, GH., Mujumdar, A. S.: Effect of variable viscosity and viscous dissipation on laminar heat transfer of a power-law fluid in the entrance region of a semi-circular duct. Int. J. Heat. Mass Transfer38, 2225–2238 (1995).

    Google Scholar 

  10. Franchi, H., Straughan, B.: Stability and nonexistence results in the generalized theory of a fluid of second grade. J. Math. Anal. Appl.180, 122–137 (1993).

    Google Scholar 

  11. Gupta, A. S.: Stability of a visco-elastic liquid film flowing down an inclined plane. J. Fluid Mech.28, 17–28 (1967).

    Google Scholar 

  12. Gupta, G., Massoudi, M.: Flow of a generalized second grade fluid between heated plates. Acta Mech.99, 21–33 (1993).

    Google Scholar 

  13. Kumari, M., Pop, I., Takhar, H. S.: Free-convection boundary-layer flow of a non-Newtonian fluid along a vertical wavy surface. Int. J. Heat Fluid Flow18, 625–631 (1997).

    Google Scholar 

  14. Man, C. S., Shields, D. H., Kjartanson, B., Sun, Q. K.: Creep of ice as a fluid of complexity 2: the pressure meter problem. Proc. 10th CANCAM, 1, pp. 347–348 (1985).

    Google Scholar 

  15. Man, C. S., Sun, Q. K.: On the significance of normal stress effects in the flow of glaciers. J. Glaciology33, 268–273 (1987).

    Google Scholar 

  16. Man, C. S.: Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity. Arch. Rat. Mech. Anal.119, 35–57 (1992).

    Google Scholar 

  17. Massoudi, M., Christie, I.: Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid. Int. J. Non-Linear Mech.30, 687–699 (1995).

    Google Scholar 

  18. Papachristodoulou, G., Trass, O.: Coal slurry fuel technology. Canadian J. Chem. Engng65, 177–201 (1987).

    Google Scholar 

  19. Rajagopal, K. R., Gupta, A. S.: An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate. Meccanica19, 158–160 (1984).

    Google Scholar 

  20. Rao, B. K.: Heat transfer to a falling power-law fluid film. Int. J. Heat Fluid Flow20, 429–436 (1999).

    Google Scholar 

  21. Reynolds, O.: On the theory of lubrication and its application to Mr. Beuchamp Tower's experiment, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc177, 157–234 (1886).

    Google Scholar 

  22. Rivlin, R. S., Ericksen, J. L.: Stress deformation relations for isotropic materials. J. Rat. Mech. Anal.4, 323–425 (1955).

    Google Scholar 

  23. Roh, N. S., Shin, D. Y., Kim, D. C., Kim, J. D.: Rheological behavior of coal-water mixtures: 1. Effects of coal type, loading and particle size. Fuel74, 1220–1225 (1995).

    Google Scholar 

  24. Saeki, T., Usui, H.: Heat transfer characteristics of coal-water mixtures. Canadian J. Chem. Engng73, 400–404 (1995).

    Google Scholar 

  25. Schowalter, W. R.: Mechanics of non-Newtonian fluids. New York: Academic Press 1978.

    Google Scholar 

  26. Shang, D. Y., Andersson, H. I.: Heat transfer in gravity-driven film flow of power-law fluids. Int. J. Heat Mass Transfer42, 2085–2099 (1999).

    Google Scholar 

  27. Shook, C. A., Roco, M. C.: Slurry flow: principles and practices. Boston: Butterworth-Heinemann 1991.

    Google Scholar 

  28. Slattery, J. C.: Advanced transport phenomena. New York: Cambridge University Press 1999.

    Google Scholar 

  29. Straughan, B.: Energy stability in the Bénard problem for a fluid of second grade. J. Appl. Math. Phys. (ZAMP)34, 502–508 (1983).

    Google Scholar 

  30. Straughan, B.: The energy method, stability, and nonlinear convection. New York: Springer 1992.

    Google Scholar 

  31. Szeri, A. Z., Rajagopal, K. R.: Flow of a non-Newtonian fluid between heated parallel plates. Int. J. Non-Linear Mech.20, 91–101 (1985).

    Google Scholar 

  32. Truesdell, C., Noll, W.: The non-linear field theories of mechanics, 2nd ed. New York: Springer 1992.

    Google Scholar 

  33. Tsai, C. Y., Novack, M., Roffe, G.: Rheological and heat transfer characteristics of flowing coalwater mixtures. DOE Report, DOE/MC/23255-2763, December 1988.

  34. Tsai, S. C., Knell, E. W.: Viscosity and rheology of coal water slurry. Fuel65, 566–571 (1986).

    Google Scholar 

  35. Winter, H. H.: Viscous dissipation in shear flows of molten polymers. Adv. Heat Transfer13, 205–267 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Massoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massoudi, M., Phuoc, T.X. Fully developed flow of a modified second grade fluid with temperature dependent viscosity. Acta Mechanica 150, 23–37 (2001). https://doi.org/10.1007/BF01178542

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178542

Keywords

Navigation