Skip to main content
Log in

Elastodynamic parameters for dynamic interface fracture mechanics

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Dynamic extension of cracks running along curvilinear interfaces of brittle bimaterials subjected to mechanical crack surface loads and superimposed thermal strains acting along the ligament is considered. This paper especially addresses the provision and discussion of elastodynamic interface parameters in order to assess quantitatively the bimaterial fracture in view of the governing physical features: applied mechanical and thermal strain loading, existence of an interface, crack-tip velocity and curvature of the interface contour. By utilizing the linear theory of thermoelasticity and adopting Stroh's method of generalized complex potentials, from the corresponding boundary and continuity conditions vectorial Hilbert problems are derived. It is shown that the parameters of the eigenvalues and of the eigenvectors of the Hilbert problems can be interpreted as elastodynamic interface mechanics parameters reading (β,v p, β Hf , μ Hf ). Generalized Dundurs parameters of dynamics (α, β) and consequently an associated generalized Dundurs diagram of dynamics are proposed. While the aforementioned elastodynamic interface parameters (α, β,v p, β Hf , μ Hf ) do not assume the interface to be damaged, interfaces with running interface cracks generally cause two additional interface parameters, denoted as bimaterial constants (ε, α Hf ), where the latter is specific to the curvature of the interface in conjunction with the velocity of the interface crack. However, the bimaterial constants (ε, α Hf ) can be traced back to interface parameters for an uncracked bimaterial, namely to (β, β Hf ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J. D.: Wave propagation in elastic solids. Amsterdam: North-Holland 1976.

    Google Scholar 

  2. Barnett, D. M., Lothe, M., Gavazza, S. D.: Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces. Proc. R. Soc. London Ser. A.402, 153–166 (1985).

    Google Scholar 

  3. Brown, E. J., Erdogan, F.: Thermal stresses in bonded materials containing cuts on the interface. Int. J. Eng. Sci.6, 517–529 (1968).

    Google Scholar 

  4. Dundurs, J.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech.36, 650–652 (1969).

    Google Scholar 

  5. Gao, H.: Stress analysis of holes in anisotropic elastic solids: conformal mapping and boundary perturbation. Q. Appl. Math.45, 553–572 (1992).

    Google Scholar 

  6. Herrmann, K. P., Noe, A.: Dynamic interface crack propagation and related problems of caustics. Arch. Mech.47, 915–956 (1995).

    Google Scholar 

  7. Hutchinson, J., Suo, Z.: Mixed-mode cracking in layered media. Adv. Appl. Mech.29, 64–191 (1991).

    Google Scholar 

  8. Lekhnitskii, S. G.: Elasticity theory of an anisotropic body. Moskau: Mir 1981.

    Google Scholar 

  9. Liu, C., Lambros, J., Rosakis, A. J.: Highly transient crack growth in a bimaterial interface: higher order asymptotic analysis and optical experiments. J. Mech. Phys. Solids41, 1887–1993 (1993).

    Google Scholar 

  10. Noe, A.: Zur dynamischen Ausbreitung gerader und gekrümmter Grenzflächenrisse in thermomechanisch belasteten Bimaterialien — Ein Beitrag zur Grenzflächenmechanik. Dissertation, Universität Paderborn 1994.

  11. Noe, A., Herrmann, K. P.: Zur Grenzflächenmechanik bei schneller Rißausbreitung. ZAMM75, 237–238 (1995).

    Google Scholar 

  12. Noe, A., Herrmann, K. P.: Elastodynamische Grenzflächenparameter bei schneller Rißausbreitung. In: Bruchmechanik von Verbundwerkstoffen und Stoffverbunden. Arbeitskreis Bruchvorgänge der DVM27, pp. 373–382. Deutscher Verband für Materialforschung und- prüfung (DVM), Berlin 1995.

    Google Scholar 

  13. Rice, J. R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech.55, 98–103 (1988).

    Google Scholar 

  14. Stroh, A. N.: Steady state problems in anisotropic elasticity. J. Math. Phys.41, 77–103 (1962).

    Google Scholar 

  15. Suga, T., Elssner, G., Schmauder, S.: Composite parameters and the mechanical compatibility of material joints. J. Compos. Mater.22 917–934 (1988).

    Google Scholar 

  16. Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. London Ser. A.427, 331–358 (1990).

    Google Scholar 

  17. Ting, T. C. T.: Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int. J. Solids Struct.22, 965–983 (1986).

    Google Scholar 

  18. Ting, T. C. T.: Generalized Dundurs constants for anisotropic bimaterials. Int. J. Solids Struct.32, 483–500 (1995).

    Google Scholar 

  19. Tippur, H. V., Rosakis, A. J.: Quasi-static and dynamic crack growth along bimaterial interfaces: a note on crack-tip field measurements using coherent gradient sensing. Exp. Mech.31, 243–251 (1991).

    Google Scholar 

  20. Yang, W., Suo, Z., Shih, C. F.: Mechanics of dynamic debonding. Proc. R. Soc. London Ser. A433, 679–697 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noe, A., Herrmann, K.P. Elastodynamic parameters for dynamic interface fracture mechanics. Acta Mechanica 123, 203–226 (1997). https://doi.org/10.1007/BF01178411

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178411

Keywords

Navigation