Skip to main content
Log in

Variational theorems and stepwise mean convergence of approximations to self-adjoint linear systems by general finite sums

Variationstheoreme und schrittweise, mittlere Konvergenz von Näherungen für selbstadjungierte lineare Systeme durch endliche Reihen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper the approximate solution of a self-adjoint linear differential system by a non-orthogonal finite sum is examined in its most general form. In obtaining the coefficients, the variational concept is based on minimizing the “energy norm” of the error function of the approximation. This systematic treatment is shown to encompass the usual Rayleigh-Ritz and Galerkin methods which arise in certain boundary value problems with homogeneous boundary conditions and the Trefftz method which arises in certain boundary value problems with homogeneous differential equations. Using theorems proviously proven by Ho, it is then shown that the approximation is improved in the “mean” when an additional term is introduced (“stepwise mean convergence”). Conditions on the uniqueness of the solution and the proper prescription of the boundary conditions follow directly from the form of the equation describing the selfadjoint operation. The method is exemplified in the paper by application to the problem in antiplane elastic shear deformation of a finite crack. A surprisingly elegant closed form solution is obtained.

Zusammenfassung

In dieser Arbeit wird die Näherungslösung eines selbstadjungierten, linearen Differentialsystems durch eine nichtorthogonale, endliche Reihe in allgemeinster Form untersucht. Zur Ermittlung der Koeffizienten wird die „Energienorm” der Fehlerfunktion der Näherung minimiert. Die systematische Behandlung umfaßt die üblichen Rayleigh-Ritz- und Galerkin-Methoden für bestimmte Randwertprobleme mit homogenen Randbedingungen, sowie die Trefftz-Methode für bestimmte Randwertprobleme mit homogenen Differentialgleichungen. Unter Verwendung der Theoreme von Ho wird gezeigt, daß die Näherung im „Mittel” durch die Einführung eines weiteren Termes („schrittweise, mittlere Konvergenz”) verbessert werden kann. Bedingungen für die Eindeutigkeit der Lösung und die passende Beschreibung der Randbedingungen folgen direkt aus der Form der Gleichung, die die selbstadjungierte Operation beschreibt. Die Methode wird durch die Anwendung auf das Problem der antiplanen, elastischen Scherdeformation eines endlichen Risses veranschaulicht. Eine überraschend elegante, geschlossene Lösung wird erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikhlin, S. G.: Variational methods in mathematical physics. (Translated by T. Boddington.) New York: Macmillan 1964. (Especially important is Chapter 9.)

    Google Scholar 

  2. Sokolnikoff, I. N.: Mathematical theory of elasticity, Chapter 7. New York: McGraw-Hill 1956.

    Google Scholar 

  3. Ho, Hwa-Shan: Convergence of general non-orthogonal series expansions and related theorems. Proc. 3rd Canadian National Congress of Applied Mechanics, University of Calgary, Alberta, Canada, May 1971, 755–957.

  4. Ho, Hwa-Shan: Mean convergence of approximation of a function by non-orthogonal finite sums. Quarterly of Applied Mathematics31, 177–184 (1973).

    Google Scholar 

  5. Friedman, B.: Principles and techniques of applied mathematics, Chapter 2. London: J. Wiley 1956.

    Google Scholar 

  6. Stakgold, L.: Boundary value problems of mathematical physics, Vol. I and II. New York: Macmillan 1967.

    Google Scholar 

  7. Cooperman, P.: An extension of the method of Treffitz for finding local bounds on the solutions of boundary value problems, and on their derivatives. Quarterly of Applied Mechanics10, 359–373 (1953).

    Google Scholar 

  8. Greenberg, H. J.: The determination of upper and lower bounds for the solution of the dirichlet problem. Journal of Mathematics and Physics27, 161–182 (1948).

    Google Scholar 

  9. Diaz, J. B., Greenberg, H. J.: Upper and lower bounds for the solution of the first boundary value problem of elasticity. Quarterly of Applied Mathematics6, 326–331 (1948).

    Google Scholar 

  10. Ho, Hwa-Shan: Variational theorems and stepwise mean convergence of approximations to self-adjoint linear systems by general finite sums. University of Southern California Report USCCE 014, Department of Civil Engineering, October 1973.

  11. Bentham, J. P., Koiter, W. T.: Asymptotic approximations to crack problems, p. 146, Chapter 3, Methods of analysis and solutions of crack problems (Sih, G. C., ed.), Vol. I, Mechanics of fracture. Noordhoff 1973.

  12. Blatz, P. J.: Plasto-elastic analyses I: The semi-infinite crack in a brittle solid subjected to antiplane shear in the crack. Fracture Mechanics Report SCTR-69-23, Science Center, North American Rockwell Corporation, October 1969.

  13. Hult, J. A. H., McClintock, F. A.: Elastic-plastic stress and strain distributions around sharp notches under repeated shear. Proc. 9th Int'l. Cong. Appl. Mechs.8, 51–72 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, H.S., Blatz, P.J. Variational theorems and stepwise mean convergence of approximations to self-adjoint linear systems by general finite sums. Acta Mechanica 36, 103–118 (1980). https://doi.org/10.1007/BF01178239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178239

Keywords

Navigation