Skip to main content
Log in

Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A study on the bending collapse of thin-walled beams filled with aluminum foam or aluminum honeycomb was carried out. The strengthening effects of ultralight metal fillers were quantified numerically and experimentally. The moment-rotation characteristics of filled sections were derived, and the results were then incorporated with structural optimization technique to develop a methodology for crashworthiness optimization of filled members. The proposed methodology requires relatively simple computations and is suitable for early stage design of crash members. Finally, the optimization problem of filled sections under combined compression/bending loading was formulated and solved. The optimization results showed potentials of significant weight saving and volume reduction by utilizing ultralight metal filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kecman, D.: Bending collapse of rectangular and square section tubes. Int. J. Mech. Sci.25, 623–638 (1983).

    Google Scholar 

  2. Abramowicz, W.: Simplified crushing analysis of thin-walled columns and beams. Engng. Trans.29, 3–27 (1983).

    Google Scholar 

  3. McGregor, I. J., Meadows, D. J., Scott, C. E., Seeds, A. D.: Impact performance of aluminum structures. In: Structural crashworthiness and failure (Jones, N., Wierzbicki, T., eds.) Amsterdam: Elsevier 1993.

    Google Scholar 

  4. Wierzbicki, T., Recke, L., Abramowicz, W., Gholami, T., Huang, J.: Stress profiles in thin-walled prismatic columns subjected to crush loading-ii. bending. Computers & Structures51, 625–641 (1994).

    Google Scholar 

  5. Seitzberger, M., Willminger, S.: Versagensmechanismen zur Kollapsanalyse axial gedrückter Aluminiumschaum-gefüllter Profile. Mat.-wiss. u. Werkstofftech31, 459–461 (2000).

    Google Scholar 

  6. Seitzberger, M., Willminger, S.: Application of plastic collapse mechanisms for the axial crushing analysis of tubular steel structures filled with aluminum foam. In: Proc. ICrash 2000, RAS (Chirwa, E. C., Otte, D., eds.) Service Point (UK) Lmt. 2000.

  7. Seitzberger, M., Rammerstorfer, F. G., Gradinger, R., Degischer, H. P., Blaimschein, M., Walch, C.: Experimental studies on the quasi-static axial crushing of steel columns filled with aluminum foam. Int. J. Solids Struct.37, 4125–4147 (2000).

    Google Scholar 

  8. Gradinger, R., Seitzberger, M., Rammerstorfer, F. G., Degischer, H. P., Blaimschein, M., Walch, Ch.: Aluminum foam filled steel tubes as composite shock absorbers. In: Metal foams and porous metal structures (Banhart, J., Fleck, N. A., eds.) MIT Press 1999.

  9. Gradinger, R., Rammerstorfer, F. G.: On the influence of mesoinhomogeneities on the crush worthiness of metal foams. Acta Mater.47, 143–148 (1999).

    Google Scholar 

  10. Seitzberger, M., Rammerstorfer, F. G., Degischer, H. P., Gradinger, R.: Crushing of axially compressed steel tubes filled with aluminum foam. Acta Mech.125, 93–105 (1997).

    Google Scholar 

  11. Daxner, T., Böhm, H. J., Rammerstorfer, F. G., Denzer, R., Maier, M.: Simulation des elasto-plastischen Verhaltens von Metallschaum mit Hilfe von 2d und 3d Einheitszellen-Modellen. Mat.-wiss. u. Werkstofftechn.31, 447–450 (2000).

    Google Scholar 

  12. Chen, W., Nardini, D.: Experimental study of crush behavior of sheet aluminum foam-fille sections. Int. J. Crashworthiness5, 447–468 (2000).

    Google Scholar 

  13. Chen, W., Wierzbicki, T.: Experimental study on the crushing behavior of aluminum closed-hat foam-filled sections. Impact & Crashworthiness Laboratory, Report No. 26, MIT 1999.

  14. Santosa, S., Banhart, J., Wiezbicki, T.: Bending crush resistance of partially foam filled sections, presented at the Int. Conf. on Metal Foams and Porous Metal Structures, Bremen, Germany, June 14–16, 1999.

  15. Santosa, S., Banhart, J., Wierzbicki, T.: Experimental and numerical analysis of bending of foam-filled sections. Acta Mech.48, 199–213 (2001).

    Google Scholar 

  16. Chen, W., Wierzbicki, T.: Weight optimization of foam-filled thin-walled crach members, 1999. Impact & Crashworthiness Laboratory, Report No. 29, MIT. Submitted to Design Optimization: International Journal for Product and Process Improvement.

  17. Wierzbicki, T., Abramowicz, W.: Manual of crashworthiness engineering, vol. iii: Stability of progressive collapse. Center for Transportation Study. MIT 1988.

  18. Abramowicz, W., Jones, N.: Transition from initial bending to progressive buckling of tubes loaded statically and dynamically. Int. J. Impact Engng.19, 415–437 (1997).

    Google Scholar 

  19. Santosa, S.: Crashworthiness analysis of ultralight metal structures. PhD thesis, Massachusetts Institute of Technology, 1999.

  20. Wierzbicki, T., Scheider, F.: The energy equivalent flow stress in crush calculations. Impact & Crashworthiness Laboratory, Report No. 15, MIT 1998.

  21. Santosa, S., Wierzbicki, T.: On the modeling of crush behavior of closed-cell aluminum foam structure. J. Mech. Phys. Solids46, 645–669 (1998).

    Google Scholar 

  22. Gibson, L., Ashby, M.: Cellular solids: structure and properties. Cambridge: Cambridge University Press 1997.

    Google Scholar 

  23. Görtler, H.: 50 Jahre Grenzschichtforschung. Eine Festchrift in Originalbeiträgen. Braunschweig: F. Vieweg 1995.

    Google Scholar 

  24. Matlab optimization toolbox, user's manual. Mathworks, 1999.

  25. Santosa, S., Wierzbicki, T., Hanssen, A. G., Langseth, M.: Experimental and numerical studies of foam-filled sections. Int. J. Impact Engng.24, 509–534 (2000).

    Google Scholar 

  26. Abramowicz, W.: The effective crushing distance in axially compressed thin-walled metal columns. Int. J. Impact Engng.1, 309–317 (1983).

    Google Scholar 

  27. Abramowicz, W., Wierzbicki, T.: Axial crushing of multicorner sheet metal columns. J. Appl. Mech.56, 113–120 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Wierzbicki, T. & Santosa, S. Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization. Acta Mechanica 153, 183–206 (2002). https://doi.org/10.1007/BF01177451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177451

Keywords

Navigation