Skip to main content
Log in

Constitutive relations of metal crystals at arbitrary strain

Werkstoffgleichungen von Metallkristallen unter beliebiger Verzerrung

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

At any generic state, the tangent moduli and compliances of a metal crystal are derived in terms of its elastic moduli and compliances, and its physical slip system hardening modulih ij. The structure ofh ij is explored in conjunction with a mixed hardening law. It is found that the latent hardening moduli (h ij,ij) are related to the active hardening moduli (h ij,i+j) through the latent hardening coefficients, and that each active hardening modulus is composed of the selfhardening, single slip modulush and the latent structural-change hardening modulih ij . The theory is supplemented with some suggested functions forh andh ij , suitable for metal forming analysis. The derived constitutive relations are finally applied to calculate the tensile stress-strain relations of aluminum and zinc crystals under finite strains.

Zusammenfassung

Für jeden beliebigen Zustand werden die Tangentenmoduli und die Nachgiebigkeiten von Metallkristallen in Termen ihrer elastischen Moduli und der Nachgiebigkeiten und ihrer Verfestigungsmoduli des physikalischen Gleitsystemsh ij hergeleitet. Die Bauart vonh ij wird in Verbindung mit einem gemischten Verfestigungsgesetz erforscht. Es wird gefunden, daß die verborgenen Verfestigungsmoduli (h ij ij) auf die aktiven Verfestigungsmoduli (h ij,i+j) durch verborgene Verfestigungskoeffizienten bezogen werden können und daß jeder aktive Verfestigungsmodul sich aus dem Modulh der Einzelgleitung und dem verborgenen Strukturänderungsverfestigungsmodulh ij zusammensetzt. Die Theorie wird durch einige fürh undh ij vorgeschlagenen Funktionen, geeignet für die Analyse von Metallumformung, ergänzt. Die hergeleiteten Werkstoffgleichungen werden abschließend angewendet zur Berechnung von Zugspannungs-Verzerrungsbeziehungen von Aluminium und Zinkkristallen unter endlichen Verzerrungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R.: On constitutive inequalities for simple materials-I. J. Mech. Phys. Solids16, 229–242 (1968).

    Google Scholar 

  2. Hill, R., Rice, J. R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids20, 401–413 (1972).

    Google Scholar 

  3. Weng, G. J.: The yield surface of single crystals at arbitrary strain. Acta Mech.37, 231–245 (1980).

    Google Scholar 

  4. Mandel, J.: Généralisation de la théorie de plasticité de W. T. Koiter. Int. J. Solids Structure1, 273–295 (1965).

    Google Scholar 

  5. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids14, 95–102 (1966).

    Google Scholar 

  6. Asaro, R. J., Rice, J. R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids25, 309–338 (1977).

    Google Scholar 

  7. Hill, R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech.18, 1–75 (1978).

    Google Scholar 

  8. Havner, K. S., Shalaby, A. H.: A simple mathematical theory of finite distortional latent hardening in single crystals. Proc. Roy. Soc. (London)A358, 47–70 (1977).

    Google Scholar 

  9. Havner, K. S., Baker, G. S., Vause, R. F.: Theoretical latent hardening in crystals-I. General equations for tension and compression with application to f.c.c. crystals in tension. J. Mech. Phys. Solids27, 33–50 (1979).

    Google Scholar 

  10. Havner, K. S., Baker, G. S.: Theoretical latent hardening in crystals-II. B.c.c. crystals in tension and compression. J. Mech. Phys. Solids27, 285–314 (1979).

    Google Scholar 

  11. Vause, R. F., Havner, K. S.: Theoretical latent hardening in crystals-III. F.c.c. crystals in compression. J. Mech. Phys. Solids27, 393–414 (1979).

    Google Scholar 

  12. Taylor, G. I.: Plastic strain in metals. J. Inst. Metals62-1, 307–324 (1938).

    Google Scholar 

  13. Lin, T. H.: Physical theory of plasticity. Adv. Appl. Mech.11, 256–312 (1971).

    Google Scholar 

  14. Hutchinson, J. W.: Elastic-plastic behavior of polycrystalline metals and composites. Proc. Roy. Soc. (London)A 319, 247–272 (1970).

    Google Scholar 

  15. Weng, G. J.: Dislocation theories of work hardening and yield surfaces of single crystals. Acta Mech.37, 217–230 (1980).

    Google Scholar 

  16. Weng, G. J.: Kinematic hardening rule in single crystals. Int. J. Solids Structures15, 861–870 (1979).

    Google Scholar 

  17. Phillips, jr., W. L.: Aluminium and copper tested in direct shear. Trans. AIME224, 845–849 (1962).

    Google Scholar 

  18. Edwards, E. H., Washburn, J.: Strain hardening of latent slip systems in zinc crystals. Trans. AIME200, 1234–1242 (1954).

    Google Scholar 

  19. Seeger, A.: The mechanism of glide and work hardening in face-centered cubic and hexagonal close-packed metals, in: Dislocations and mechanical properties of crystals (Fisher, J. C., et al., eds.), pp. 243–329. New York: Wiley 1957.

    Google Scholar 

  20. Weng, G. J.: Constitutive equations of single crystals and polycrystalline aggregates under cyclic loading. Int. J. Engng. Sci.18, 1385–1397 (1980).

    Google Scholar 

  21. Hertzberg, R. W.: Deformation and fracture mechanics of engineering materials, pp. 13–14, 73. New York: Wiley 1976.

    Google Scholar 

  22. Jackson, P. S., Basinski, Z. S.: Latent hardening and the flow stress in copper single crystals. Can. J. Phys.45, 707–735 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, G.J. Constitutive relations of metal crystals at arbitrary strain. Acta Mechanica 41, 217–232 (1981). https://doi.org/10.1007/BF01177349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177349

Keywords

Navigation