Skip to main content
Log in

On plastic potentials for anisotropic metals and their derivation from the texture function

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Plastic yielding of anisotropic metals can be either described by a macroscopic constitutive relation or assessed by means of a model which correlates single and polycrystal behaviors. The mathematical identification of the plastic work rate derived from the two approaches, for all strain rate tensors, leads to a fit of the polycrystal yield surface by an analytical function. When a quadratic from is assumed, the macroscopic anisotropy parameters become explicit functions of the texture coefficients. This identification method is applied to calculate yield surfaces andR-values of rolled and annealed steel sheets: theR-values and in general the flow rule, are more significantly modified by the fitting than the yield surface. Thus, it is worth extending the method to more general constitutive relations which may be given by the form of their work function: alternative forms of the work function for plastic materials are explored, especially in the bearing of convexity and homogeneity where quadratic forms have a distinct advantage. Finally, it is shown that the identification of the work function allows to express the phenomenological coefficients as analytical functions of the texture parameters for many forms of the work function; in the other cases, these coefficients may be obtained by linear or non-linear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, G. I.: Plastic strain in metals. J. Inst. Metals62, 307–324 (1938).

    Google Scholar 

  2. Bishop, J. F. W., Hill, R.: A theory of the plastic distorision of a polycrystalline aggregate under combined stress. Phil. Mag.42, 414–427 (1951).

    Google Scholar 

  3. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc.A 193, 281–297 (1948).

    Google Scholar 

  4. Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Cambr. Phil. Soc.85, 179–191 (1979).

    Google Scholar 

  5. Montheillet, F., Gilormini, P., Jonas, J. J.: Relation between axial stresses and texture development during torsion testing: a simplified theory. Acta Metall.33, 705–717 (1985).

    Google Scholar 

  6. Lequeu, Ph., Gilormini, P., Montheillet, F., Bacroix, B., Jonas, J. J.: Yield surfaces for textured polycrystals. I. Crystallographic approach. Acta Metall.35, 439–451 (1987).

    Google Scholar 

  7. Lequeu, Ph., Gilormini, P., Montheillet, F., Bacroix, B., Jonas, J. J.: Yield surfaces for textured polycrystals. II. Analytical approach. Acta Metall.35, 1159–1174 (1987).

    Google Scholar 

  8. Arminjon, M.: Contribution à l'étude des relations entre les paramétres d'anisotropic et les fonctions de répartition des orientations cristallographiques des polycristaux métalliques. Thèse de Doctorat de 3ème cycle, Université de Grenoble, France (1981).

    Google Scholar 

  9. Arminjon, M.: Explicit relationships between texture coefficients and three-dimensional yield criteria of metals. In: Textures of materials (Brakman, C. M., et al., eds.), pp. 31–37. Zwijndrecht: Netherlands Soc. Mater. Sci. 1984.

    Google Scholar 

  10. Arminjon, M., Boehler, J. P.: Comportement plastique et texture cristallographique des métaux anisotropes. In: Comportement plastique des solides anisotropes (Boehler, J.P., ed.), pp. 133–155. Paris: Editions du CNRS 1985.

    Google Scholar 

  11. Arminjon, M.: Lois de comportement homogénéisées pour la plasticité des polycristaux. Mémoire d'Habilitation, Université Paris-Nord, France (1988).

    Google Scholar 

  12. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids15, 79–95 (1967).

    Google Scholar 

  13. Bunge, H. J.: Mathematische Methoden der Texturanalyse. Berlin: Akademie Verlag 1969.

    Google Scholar 

  14. Bunge, H. J.: Texture analysis in materials science. Mathematical methods. London: Butterworths 1982.

    Google Scholar 

  15. Bunge, H. J., Schulze, M., Grzesik, D.: Calculation of the yield locus of polycrystalline materials according to the Taylor theory. Peine-Salzgitter Berichte, Sonderheft (1980).

  16. Gilormini, P., Bacroix, B., Jonas, J. J.: Theoretical analyses of 〈111〉 pencil glide in BCC crystals. Acta Metall.36, 231–256 (1988).

    Google Scholar 

  17. Canova, G. R., Kocks, U. F., Tome, C. N., Jonas, J. J.: The yield surface of textured polycrystals. J. Mech. Phys. Solids33, 371–397 (1985).

    Google Scholar 

  18. Barlat, F., Lian, J.: Plastic behavior and stretchability of sheet metals. Part I. A yield function for orthotropic sheets under plane stress conditions. Int. J. Plast.5, 51–66 (1989).

    Google Scholar 

  19. Barlat, F.: Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mat. Sci. Eng.91, 55–72 (1987).

    Google Scholar 

  20. Barlat, F., Richmond, O.: Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured Fcc polycrystalline sheets. Mat. Sci.95, 15–29 (1987).

    Google Scholar 

  21. Arminjon, M.: Théorie d'une classe de modèles de Taylor “hétérogènes”. Application aux textures de déformation des aciers. Acta Metall.35, 615–630 (1987).

    Google Scholar 

  22. Stout, M. G., Hecker, S. S., Bourcier, R.: An evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 Aluminum tubes. J. Eng. Mater. Techn.105, 242–249 (1983).

    Google Scholar 

  23. Vial, C., Hosford, W. F., Caddell, R. M.: Yield loci of anisotropic sheet metals. Int. J. Mech. Sci.25, 899–915 (1983).

    Google Scholar 

  24. Legait, J.: Prise en compte de l'anisotropie en vue du calcul par éléments finis de l'emboutissage. Mém. Et. Sci. Rev. Mét.86, 171–175 (1989).

    Google Scholar 

  25. Hill, R.: New horizons in the mechanics of solids. J. Mech. Phys. Solids5, 66–74 (1956).

    Google Scholar 

  26. Hill, R.: Extremal paths of plastic work and deformation. J. Mech. Phys. Solids34, 511–523 (1986).

    Google Scholar 

  27. Hill, R.: Constitutive dual potentials in classical plasticity. J. Mech. Phys. Solids35, 23–33 (1987).

    Google Scholar 

  28. Arminjon, M.: Texteres de déformation et écrouissage anisotrope de tôles d'acier. IRSID external report RE 1186, pp. 97–98 (1985).

  29. Gotoh, M.: A theory of plastic anisotropy based on a yield function of fourth order (plane stress). Int. J. Mech. Sci.19, 505–520 (1977).

    Google Scholar 

  30. van Houtte, P., van Bael, A., Aernoudt, E., Pillinger, I., Hartley, P., Sturgess, C. E. N.: The introduction of anisotropic yield loci derived from texture measurements in elasto plastic finite elements calculations. In: Advances in plasticity 1989. Proc. 2nd Int. Symp. on Plasticity and its Current Applications. London: Pergamon Press 1989.

    Google Scholar 

  31. van Houtte, P., Mols, K., van Bael, A., Aernoudt, E.: Application of yield loci calculated from texture data. Textures and Microstructures11, 23–39 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arminjon, M., Bacroix, B. On plastic potentials for anisotropic metals and their derivation from the texture function. Acta Mechanica 88, 219–243 (1991). https://doi.org/10.1007/BF01177098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177098

Keywords

Navigation